Novel Halogen-Free Ultra High Flame Retardant Polymers Through Enzyme Catalysis

Sethumadhavan Ravichandrana,g, Subhalakshmi Nagarajanb,g, Bon Choel Kuc, Bryan Coughlind, Todd Emrickd, Jayant Kumare,g, and Ramaswamy Nagarajanf,g*

a Department of Chemistry, University of Massachusetts, Lowell, MA 01854, USA
b U.S Army Natick Soldier Research, Development, and Engineering Center, Natick, MA 01796, USA
c Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003, USA
d Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003, USA
e Department of Physics, University of Massachusetts, Lowell, MA 01854, USA
f Department of Plastics Engineering, University of Massachusetts, Lowell, MA 01854, USA.
g Center for Advanced Materials, University of Massachusetts, Lowell, MA 01854

*Email: Ramaswamy.Nagarajan@uml.edu; Fax: +1 978-458-9571; Tel: +1 978-934-3454

† Electronic Supplementary Information (ESI) available:

Characterization of enzymatic synthesis was done using 1H NMR spectra, collected using a Bruker 500 MHz NMR spectrometer. The solvent used was deuterated dimethylsulfoxide (DMSO - Cambridge Isotope Labs Inc.)

Figure. S1. 1H NMR spectra of MHDB monomer and poly(MHDB)
Figure. S2. Heat release rate curves for poly(BHDB/MHDB-co-phenol)