SUPPORTING INFORMATION

On water preparation of phenylselenoesters

Claudio Santi*a Benedetta Battistellia, Lorenzo Testaferria, and Marcello Tieccoa

Dipartimento di Chimica e Tecnologia del Farmaco – Group of Catalysis and Green Chemistry, Via del Liceo 1 06134, Perugia, Italy. Fax: +39 075 5855116; Tel: +39 075 5855112; E-mail: santi@unipg.it

General. All new compounds were characterized by 1H- and 13C-NMR and elemental analyses. 1H- and 13C-NMR spectra were recorded at 400 and 100.62 MHz, respectively, on a Bruker Avance-DRX 400 instrument. Elemental analyses were carried out on a Carlo Erba 1106 elemental analyzer. Starting acyl chlorides are commercially available and have been used without further purifications.

Synthesis of PhSeZnCl (1a), PhSeZnBr (1b) and PhSZnCl (2):

PhSeZnCl 1a and PhSeZnBr 1b have been prepared according to previously reported procedure.[1] PhSZnCl 2 has been synthesized by adding to a solution of (PhS)$_2$ (10.0 mmol) in diethyl ether (20 mL) SO$_2$Cl$_2$ (10.0 mmol) at 0°C under stirring to form the corresponding PhSCI. After 30 minutes the solvent was evaporated under vacuum. The yellow solid was dissolved in THF and 10.0 mmol of zinc powder was added at reflux. After 20 minutes the mixture, became colorless, was filtered and PhSZnCl was precipitated from petroleum ether as with solid and washed more time with the same solvent.

General procedure for the “on water” nucleophilic acyl substitution mediated by PhSeZnCl (1a), PhSeZnBr (1b) and PhSZnCl (2).

0.13 mmol of 1a-b or 2 and 0.13 mmol of acyl chloride were poured in 4mL of water and vigorously stirred at 23 °C for 3 hours. Then the aqueous phase was extracted 3 times with ethyl acetate. The collected organic layers were washed with brine, dried over Na$_2$SO$_4$, filtered and the solvent removed under vacuum. Products 4d, 4f, 5f, 4g, 4i and 4m were purified by flash chromatography using petroleum ether-ethyl acetate (19:1). Products 4a, 5a, 4b, 5b, 4c, 4e, 4h and 4i have been purified by recrystallization from ethyl acetate-hexane. Yields reported on table 2 refer to the isolated products.

Physical and spectral data for the compounds not already described in literature are reported below.

Se-phenyl 4-butylbenzenecarboselenoate 4d: Oil. 1H NMR (400 MHz, CDCl$_3$): δ = 7.87 (d, 2H, J^d = 8.2 Hz, H-Ar), 7.65-7.57 (m, 2H, H-Ar), 7.50-7.40 (m, 3H, H-Ar), 7.35-7.25 (m, 2H, H-Ar), 2.69 (t, 2H, J^d = 7.5 Hz, C$_2$H$_2$), 1.66 (quin, 2H, J^d = 7.2 Hz, C$_2$H$_2$), 1.36 (sex, 2H, J^d = 7.4 Hz, C$_2$H$_2$), 0.96 (t, 3H, J^d = 7.3 Hz, C$_3$H$_3$) ppm. 13C NMR (400 MHz, CDCl$_3$): δ = 192.7, 149.8, 136.3, 136.1, 130.6, 129.2, 128.9, 127.4, 126.0, 35.9, 33.4, 22.3, 13.9 ppm. Elemental analysis calcd (%) for C$_{17}$H$_{18}$OSe (318.05) C, 64.35; H, 5.72; Found C, 63.97; H, 5.69.

Se-phenyl 3,5-dinitrobenzoselenoate 4e: Yellow solid, m.p. = 148-150°C. 1H NMR (400 MHz, CDCl$_3$): δ = 9.30-9.20 (m, 1H, H-Ar), 9.10-9.00 (m, 2H, H-Ar), 7.65-7.55 (m, 2H, H-Ar), 7.50-7.45 (m, 3H, H-Ar) ppm. 13C NMR (400 MHz, CDCl$_3$): δ = 190.8, 149.4, 141.9, 136.4, 130.4, 130.3, 127.1, 124.5, 123.0 ppm. Elemental analysis calcd (%) for C$_{13}$H$_8$N$_2$O$_5$Se (351.96) C, 44.46; H, 2.30; Found C, 44.74; H, 2.18.

Se-phenyl pent-4-eneselenoate 4l: Oil. 1H NMR (400 MHz, CDCl$_3$): δ = 7.60-7.45 (m, 2H, H-Ar), 7.45-7.30 (m, 3H, H-Ar), 5.90-5.60 (m, 1H, CH=), 5.20-4.95 (m, 2H, CH$_2$=), 2.80 (t, 2H, J^d = 7.3 Hz, CH$_2$C(O)), 2.43 (q, 2H, J^d = 6.5 Hz, CH$_2$) ppm. 13C NMR (400 MHz, CDCl$_3$): δ = 193.6, 135.7, 135.8, 131.4, 129.4, 128.9, 116.1, 46.6, 29.1 ppm. Elemental analysis calcd (%) for C$_{11}$H$_{12}$OSe (240.01) C, 55.24; H, 5.06; Found C, 55.77; H, 5.03.
Se-phenyl benzoselenoate $4a$: Elemental analysis calcd (%) for $C_{13}H_{10}OSe$ (261.99) C, 59.78; H, 3.86; Found C, 59.35; H, 3.87.

Se-phenyl 2-bromobenzoselenoate $4b$: Elemental analysis calcd (%) for $C_{13}H_9BrOSe$ (339.90) C, 45.91; H, 2.67; Found C, 45.55; H, 2.68.

Se-phenyl 4-bromobenzoselenoate $4c$: Elemental analysis calcd (%) for $C_{13}H_9BrOSe$ (339.90) C, 45.91; H, 2.67; Found C, 45.56; H, 2.67.

Se-phenyl 2-phenylethaneselenoate $4f$: Elemental analysis calcd (%) for $C_{14}H_{12}OSe$ (276.01) C, 61.10; H, 4.40; Found C, 61.30; H, 4.42.

(E)-Se-phenyl 3-phenylprop-2-eneselenoate $4g$: Elemental analysis calcd (%) for $C_{15}H_{12}OSe$ (288.01) C, 62.73; H, 4.21; Found C, 62.65; H, 4.23.

Se-phenyl thiophene-2-carboselenoate $4h$: Elemental analysis calcd (%) for $C_{11}H_8OSSe$ (267.95) C, 49.44; H, 3.02; Found C, 49.38; H, 3.00.

Se-phenyl furan-2-carboselenoate $4i$: Elemental analysis calcd (%) for $C_{11}H_8O_2Se$ (251.97) C, 52.61; H, 3.21; Found C, 52.64; H, 3.20.

S-phenyl benzothioate $5a$: Elemental analysis calcd (%) for $C_{13}H_{10}OS$ (114.28) C, 72.87; H, 4.70; Found C, 72.65; H, 4.71.

S-phenyl 2-bromobenzothioate $5b$: Elemental analysis calcd (%) for $C_{13}H_9BrOS$ (293.18) C, 53.26; H, 3.09; Found C, 53.15; H, 3.10.

S-phenyl 2-phenylethanethioate $5f$: Elemental analysis calcd (%) for $C_{14}H_{12}OS$ (228.31) C, 73.65; H, 5.30; Found C, 73.80; H, 5.29.
References:

