Laccase-catalyzed oxidative phenolic coupling of vanillidene derivatives

Mihaela-Anca Constantin, Jürgen Conrad and Uwe Beifuss*

Bioorganische Chemie, Institut für Chemie, Universität Hohenheim, Garbenstraße 30, D-70599 Stuttgart, Germany

Electronic Supplementary Information

Table of contents

1. General remarks 2
2. Oxidative dimerization of ferulic acid [(E)-1] using laccase as the catalyst 3
3. Synthesis of vanillidene derivatives 14a-f and 15a-d 3
4. Laccase-catalyzed dimerization of disubstituted vanillidene derivatives 11
5. Laccase catalyzed dimerization of trisubstituted vanillidene derivatives 16
6. Enantiomeric analysis of 17a-d by chiral HPLC 20
7. Copies of 1H and 13C NMR spectra 22
8. References 43
1. General remarks

All commercially available reagents were used without further purification. Solvents used for extraction and purification were distilled prior to use. Reaction temperatures are reported as bath temperatures.

Melting points were obtained on a Büchi melting point apparatus B-545 with open capillary tubes and are uncorrected. IR spectra were measured on a Perkin Elmer Spectrum One (FT-IR spectrometer). UV/VIS spectra were recorded with a Varian Cary 50. 1H and 13C NMR spectra were recorded at 500 (125) and 300 (75) MHz on a Varian Unity Inova 500 MHz spectrometer and the chemical shifts were referenced to CDCl$_3$ ($\delta = 7.26$ ppm in 1H NMR spectra and $\delta = 77.00$ in 13C NMR spectra) and DMSO-d_6 ($\delta = 2.50$ ppm in 1H NMR spectra and $\delta = 39.52$ in 13C NMR spectra) as the solvents. HSQC-, HMBC-, HSQMBC- and COSY spectra were recorded on Varian Unity Inova spectrometers (500 MHz or 300 MHz). Coupling constants J [Hz] were directly taken from the spectra and are not averaged. Splitting patterns are designated as s (singlet), d (doublet), t (triplet), q (quartet), sex (sextet), m (multiplet), br (broad) and ov (overlapped). Low resolution impact mass spectra (EI-LRMS) and exact mass electron impact mass spectra (HRMS) were obtained at 70 eV on a Finnigan Mat 95 instrument. Gas-chromatography mass spectra (GC-MS) were done on a Thermo Polaris Q equipped with a Varian Trace GC Ultra and a column DB5 (TGC/50/5/10/280). ESI-MS spectra were measured on a Bruker Microtof Q. The intensities are reported as percentages relative to the base peak (I = 100%).

Thin-layer chromatography (TLC) was performed on TLC silica gel 60 F$_{254}$ (Merck). Products were purified by column chromatography on silica gel MN 60, 0.063-0.200 mm (Macherey and Nagel) or by flash column chromatography on silica gel MN 60, 0.04-0.053 mm (Macherey and Nagel). Analytical HPLC was performed using a Knauer K-501 pump equipped with a Bischoff LAMBDA 1000 detector. The chiral HPLC column used was from Daicel Chemical Industries (Chiralpak IB; 250 mm x 4.6 mm; 5μm)

Laccases from *Trametes versicolor* and *Agaricus bisporus* were from Sigma (EC 1.10.3.2). The pH of the buffer was adjusted using a pH 330/SET-1 pH-meter.
2. Oxidative dimerization of ferulic acid [(E)-1] using laccase as the catalyst

A solution of ferulic acid [(E)-1] (500 mg, 2.6 mmol) in DMSO (9 mL) was added to NaOAc buffer (430 mL, 0.1 M, pH 5.0). Laccase from *Trametes versicolor* (2.5 mg, 27 U) was added and the reaction mixture was stirred under air at room temperature for 2 h. The reaction mixture was acidified with 5M HCl (25 mL) and the solution was extracted with CH₂Cl₂ (3 × 100 mL). The combined organic phases were dried over MgSO₄, filtered, and evaporated in *vacuo*. The crude product was purified by repeated crystallization from EtOAc/cyclohexane (2:1) to give 4-cis,8-cis-bis(4-hydroxy-3-methoxyphenyl)-3,7-dioxabicyclo[3.3.0]octane-2,6-dione (16) (80 mg, 0.21 mmol, 16%) as a white solid. mp 199-200 °C (lit.,¹ 206-208 °C); UV \(\lambda_{\text{max}} \) (EtOH)/nm 235 and 281 (log \(\varepsilon \)/dm³ mol⁻¹ cm⁻¹ 4.19 and 3.88); IR (ATR) \(\tilde{\nu}_{\text{max}} \) cm⁻¹ 3017 (OH), 1764 (lactone), 1612 (arom. C=C), 1520 (arom. C=C), 1280 (arom. C-O), 861 (arom. C-H) and 826 (arom. C-H); ¹H NMR \(\delta_H \) (300 MHz; DMSO-d₆) 3.80 (6H, s, OCH₃), 4.40 (2H, s, 1-H and 5-H), 5.73 (2H, s, 4-H and 8-H), 6.80 (2H, d, \(^3\)J₂-H,₆'-H 8.1 Hz, 5'-H), 6.87 (2H, d, \(^3\)J₂-H,₆'-H 8.3 Hz, 6'-H), 6.99 (2H, d, \(^3\)J₂-H,₆'-H 1.8 Hz, 2'-H) and 9.24 (s, 2H, OH); ¹³C NMR \(\delta_c \) (75 MHz; DMSO-d₆) 48.08 (C-1 and C-5), 55.80 (OCH₃), 82.07 (C-4 and C-8), 110.64 (C-2’), 115.48 (C-5’), 119.22 (C-6’), 129.01 (C-1’), 147.36 (C-4’), 147.86 (C-3’) and 175.42 (C-2 and C-6); MS (ESI, pos.) m/z 409 [(M+Na)+, 100%].

3. Synthesis of vanillidene derivatives 14a-f and 15a-d

3.1 General procedure I for the synthesis of (E)-ferulic acid esters of type 14

(E)-ferulic acid esters were prepared according to the method described by Ralph et al.² A solution of ferulic acid [(E)-1] (5.0 g, 26 mmol) in the corresponding alcohol was treated with acetyl chloride (6 mL, 84 mmol) with cooling. The mixture was stirred at room temperature until the substrate was consumed (TLC). The solvent was removed in *vacuo* and the crude product was purified by column chromatography over silica gel using EtOAc/cyclohexane as eluent to give the ferulic acid esters in analytical pure form.
3.1.1 Methyl-(E)-3-(4-hydroxy-3-methoxyphenyl)-propenoate [(E)-14a]

According to the general procedure I ferulic acid [(E)-1] (5.0 g, 26 mmol) and distilled methanol (90 mL, 2.2 mol) were reacted for 24 h. After evaporation of the volatiles in vacuo the crude product was purified by column chromatography over silica gel (cyclohexane/EtOAc = 1:1) to afford methyl-(E)-3-(4-hydroxy-3-methoxyphenyl)-propenoate [(E)-14a] (4.9 g, 24 mmol, 93%) as a white solid: mp 65 °C (lit., 367-68 °C); R_f 0.40 (cyclohexane/EtOAc = 1:1); UV λ_max (EtOH)/nm 203, 218, 237 and 327 (log ε/dm^3 mol^{-1} cm^{-1} 4.00, 4.05, 4.02 and 4.00); IR (ATR) ~ν_max/cm^{-1} 3332 (OH), 2947 (CH_3), 1699 (C=O), 1634 (C=C), 1589 (arom. C=C), 1256 (arom. C-O), 979 (trans –CH=CH-), 861 (arom. C-H) and 813 (arom. C-H); ¹H NMR δ_H (300 MHz; CDCl₃) 3.75 (3H, s, CO₂CH₃), 3.83 (3H, s, OCH₃), 6.25 (1H, d, ^3J_{2'-H,3-H} 15.9 Hz, 2'-H), 6.38 (1H, s, OH), 6.87 (1H, d, ^3J_{5'-H,6'-H} 8.2 Hz, 5'-H), 6.96 (1H, d, ^4J_{2'-H,6'-H} 1.5 Hz, 2'-H), 7.00 (1H, dd, ^3J_{5'-H,6'-H} 8.2 Hz, ^4J_{2'-H,6'-H} 1.7 Hz, 6'-H) and 7.58 (1H, d, ^3J_{2'-H,3-H} 15.9 Hz, 3-H); ¹³C NMR δ_c (75 MHz; CDCl₃) 51.42 (CO₂CH₃), 55.86 (OCH₃), 109.39 (C-2’), 114.72 (C-5’),* 114.74 (C-2’), 122.78 (C-6’), 126.63 (C-1’), 144.91 (C-3), 146.76 (C-3’), 147.97 (C-4’) and 167.71 (C-1); MS (EI, 70 eV) m/z 208 (M⁺, 100%), 177 (46) and 145 (18).

* value may be interchanged

3.1.2 Ethyl-(E)-3-(4-hydroxy-3-methoxyphenyl)-propenoate [(E)-14b]

According to the general procedure I ferulic acid [(E)-1] (5.0 g, 26 mmol) and distilled ethanol (90 mL, 1.5 mol) were reacted for 48 h. After evaporation of the volatiles in vacuo the crude product was purified by column chromatography over silica gel (cyclohexane/EtOAc = 7:5) to afford ethyl-(E)-3-(4-hydroxy-3-methoxyphenyl)-propenoate [(E)-14b] (4.9 g, 22
mmol, 86%) as a white solid: mp 57-58 °C (petroleum ether) (lit., 4 58 °C); Rf 0.34 (cyclohexane/EtOAc = 7:5); UV νmax (EtOH)/nm 218, 236 and 327 (log ε/dm³ mol⁻¹ cm⁻¹ 4.06, 4.01 and 4.24); IR (ATR) νmax/cm⁻¹ 3169 (OH), 2977 (CH₂, CH₃), 1671 (C=O), 1629 (C=C), 1588 (arom. C=C), 1515 (arom. C=C), 1281 (arom. C-O), 1251 (arom. C-O), 975 (trans CH=CH-), 842 (arom. C-H) and 812 (arom. C-H); ¹H NMR δH (300 MHz; CDCl₃) 1.33 (3H, t, 3 J₁''-H,₂''-H 7.0 Hz, 2''-H), 3.91 (3H, s, OCH₃), 4.25 (2H, q, 3 J₁''-H, 2''-H 7.1 Hz, 1''-H), 5.90 (1H, s, OH), 6.28 (1H, d, 3 J₂-H₃-H 16.0 Hz, 2-H), 6.91 (1H, d, 3 J₅-H₆-H 8.0 Hz, 5'-H), 7.02 (1H, d, 4 J₂-H₆-H 1.6 Hz, 2'-H), 7.06 (1H, dd, 3 J₅-H₆-H 8.2 Hz, 4 J₂-H₆-H 1.7 Hz, 6'-H) and 7.61 (1H, d, 3 J₂-H₃-H 16.0 Hz, 3-H); ¹³C NMR δc (75 MHz; CDCl₃) 14.32 (C-2''), 55.89 (OCH₃), 60.33 (C-1''), 109.29 (C-2''), 114.69 (C-5''), 115.60 (C-2), 122.98 (C-6''), 126.99 (C-1'), 144.65 (C-3), 146.75 (C-4''), 147.89 (C-3') and 167.28 (C-1); MS (GC-MS) m/z 222 (M⁺, 100%), 177 (47), 145 (74), 117 (30), 89 (35) and 77 (27).

3.1.3 n-Propyl-(E)-3-(4-hydroxy-3-methoxyphenyl)-propenoate [(E)-14c]

According to the general procedure I ferulic acid [(E)-1] (5.0 g, 26 mmol) and n-propanol (120 mL, 1.6 mol) were reacted for 48 h. After evaporation of the volatiles in vacuo the crude product was purified by column chromatography over silica gel (cyclohexane/EtOAc = 2:1) to afford n-propyl-(E)-3-(4-hydroxy-3-methoxyphenyl)-propenoate [(E)-14c] (5.5 g, 23 mmol, 90%) as a white solid: mp 40-41 °C (petroleum ether) (lit., 5 34-36 °C); Rf 0.6 (cyclohexane/EtOAc = 1:2); UV νmax (EtOH)/nm 201, 217, 236 and 326 (log ε/dm³ mol⁻¹ cm⁻¹ 4.15, 4.08, 4.03 and 4.25); IR (ATR) νmax/cm⁻¹ 3401 (OH), 2977 (CH₃, CH₂), 1679 (C=O), 1632 (C=C), 1590 (arom. C=C), 1511 cm⁻¹ (arom. C=C), 1264 (arom. C-O), 1153 (alkyl C-O), 979 (trans CH=CH-), 845 (arom. C-H) and 815 (arom. C-H); ¹H NMR δH (300 MHz; CDCl₃) 0.99 (3H, t, 3 J₂-H₃-H 7.5 Hz, 3'-H), 1.71 (2H, sex, 3 J₁'-H₂'-H 7.0 Hz, 2''-H), 3.91 (3H, s, OCH₃), 4.15 (2H, t, 3 J₁'-H₂'-H 7.0 Hz, 1''-H), 5.94 (1H, s, OH), 6.29 (1H, d, 3 J₂-H₃-H 15.8 Hz, 2-H), 6.91 (1H, d, 3 J₅-H₆-H 8.0 Hz, 5'-H), 7.03 (1H, d, 4 J₂-H₆-H 1.6 Hz, 6'-H) and 7.61 (1H, d, 3 J₂-H₃-H 16.0 Hz, 3-H); ¹³C NMR δc (75 MHz; CDCl₃) 10.42 (C-3''), 22.08 (C-2''), 55.90 (OCH₃), 66.00 (C-1''), 109.32 (C-2''), 114.70 (C-5''), 122.99 (C-6''), 126.99 (C-1'), 144.65 (C-3), 146.75 (C-4''), 147.89 (C-3') and 167.28 (C-1); MS (GC-MS) m/z 222 (M⁺, 100%), 177 (47), 145 (74), 117 (30), 89 (35) and 77 (27).
4'), 147.89 (C-3') and 167.40 (C-1); MS (EI, 70 eV) m/z 236 (M+, 100%), 194 (65), 177 (75), 145 (41), 117 (13), 89 (10) and 77 (5).

3.1.4 n-Butyl-(E)-3-(4-hydroxy-3-methoxyphenyl)-propenoate [(E)-14d]

According to the general procedure I ferulic acid [(E)-1] (5.0 g, 26 mmol) and n-butanol (137 mL, 1.5 mol) were reacted for 6 d. After evaporation of the volatiles in vacuo the crude product was purified by column chromatography over silica gel (cyclohexane/EtOAc = 7:3) to afford n-butyl-(E)-3-(4-hydroxy-3-methoxyphenyl)-propenoate [(E)-14d] (5.7 g, 23 mmol, 90%): mp 50-51 °C (lit. 6 46-48 °C); Rf 0.33 (cyclohexane/EtOAc = 7:3); UV λ_{max} (EtOH)/nm 218, 236 and 326 (log ε/dm3 mol$^{-1}$ cm$^{-1}$ 4.05, 4.00 and 4.24); IR (ATR) $\tilde{\nu}_{max}$/cm$^{-1}$ 3396 (OH), 2959 (CH$_3$, CH$_2$), 1679 (C=O), 1632 (C=C), 1590 (arom. C=C), 1511 (arom. C=C), 1264 (arom. C-O), 1154 (alkyl C-O), 978 (trans -CH=CH-), 845 (arom. C-H) and 815 (arom. C-H); 1H NMR δ_H (300 MHz; CDCl$_3$) 0.93 (3H, t, $^3J_{3''-H,4''-H}$ 7.3 Hz, 4''-H), 1.45 (2H, sex., $^3J_{3''-H,4''-H}$ 7.5 Hz, 3''-H), 1.69 (2H, q, $^3J_{2''-H,3''-H}$ 6.7 Hz, 2''-H), 3.92 (3H, s, OCH$_3$), 4.20 (2H, t, $^3J_{1''-H,2''-H}$ 6.7 Hz, 1''-H), 5.91 (1H, s, OH), 6.29 (1H, d, $^3J_{2-J,3-H}$ 16.0 Hz, 2-H), 6.91 (1H, d, $^3J_{5-J,6-H}$ 8.2 Hz, 5'-H), 7.03 (1H, d, $^4J_{2-J,3-H}$ 1.6 Hz, 2'-H), 7.06 (1H, dd, $^3J_{5-J,6-H}$ 8.2 Hz, $^4J_{2-J,3-H}$ 1.8 Hz, 6'-H) and 7.61 (1H, d, $^3J_{2-J,3-H}$ 15.8 Hz, 3-H); 13C NMR δ_c (75 MHz; CDCl$_3$) 13.73 (C-4''), 19.87 (C-3''), 30.79 (C-2''), 55.90 (OCH$_3$), 64.28 (C-1''), 109.28 (C-2'), 114.68 (C-5'), 115.64 (C-2), 123.00 (C-6''), 127.02 (C-1''), 144.60 (C-3), 146.74 (C-3'), 147.88 (C-4'') and 167.38 (C-1); MS (GC-MS) m/z 250 (M', 46%), 194 (100), 177 (38), 145 (50), 117 (29), 89 (28) and 77 (21).

3.2 Synthesis of (E)-4-(4-hydroxy-3-methoxyphenyl)but-3-en-2-one [(E)-14e]

A solution of vanillin (18) (2.5 g, 16 mmol) in acetone (30 mL) was treated with 8 M HCl (8
mL) and the resulting mixture was stirred at room temperature for 24 h. The reaction mixture was neutralized with 2.5 M NaOH (ca. 20 mL), H₂O (100 mL) was added and the mixture was extracted with EtOAc (2 × 100 mL). The combined organic layers was dried over Na₂SO₄, filtered and evaporated in vacuo. The crude product was purified by column chromatography over silica gel (CH₂Cl₂/MeOH = 20:0.1) to afford (E)-4-(4-hydroxy-3-methoxyphenyl)but-3-en-2-one [(E)-14e] (1.5 g, 7.8 mmol, 48%) as a yellow solid. mp 125-126 °C (lit., 7 124-125 °C); Rₚ 0.26 (CH₂Cl₂/MeOH = 20:0.1); UV λₘₚₙ (MeCN)/nm 221, 238 and 328 (log ε/dm³ mol⁻¹ cm⁻¹ 4.06, 4.05 and 4.31); IR (ATR) νₘₚₙ/cm⁻¹ 3241 (OH), 3003 (CH₃), 1674 (C=O), 1635 (C=C), 1581 (arom. C=C), 1516 (arom. C=C), 1262 (arom. C-O), 1165 (alkyl C-O), 979 (trans -CH=CH-), 839 (arom. C-H) and 823 (arom. C-H); H NMR δ'H (300 MHz; CDCl₃) 2.36 (3H, s, 1-H), 3.93 (3H, s, OCH₃), 5.94 (1H, s, OH), 6.58 (1H, d, J3-H=4-H 16.3 Hz, 3-H), 6.93 (1H, d, J2'-H,6'-H 8.0 Hz, 5'-H), 7.06 (1H, d, J2'-H,6'-H 1.9 Hz, 2'-H), 7.09 (1H, dd, J3'-H,6'-H 8.1 Hz, J4',J6'-H 1.8 Hz, 6'-H) and 7.45 (1H, d, J3-H,4-H 16.1 Hz, 4-H); C NMR δ'C (75 MHz; CDCl₃) 27.28 (C-1), 55.94 (OCH₃), 109.28 (C-2'), 114.80 (C-5'), 123.50 (C-6'), 124.98 (C-3), 126.91 (C-1'), 143.72 (C-4), 146.86 (C-3'), 148.24 (C-4') and 198.40 (C-2); MS (EI, 70 eV) m/z 192 (M⁺, 100%), 145 (64), 134 (8), 117 (17) and 89 (8).

3.3 Synthesis of (E)-3-(4-hydroxy-3-methoxyphenyl)acrylonitrile [(E)-14f]⁸

A suspension of KOH (1.8 g, 32 mmol) and 18-crown-6 (442 mg, 16 mol) in acetonitrile (30 mL) was refluxed under argon for 10 min. A solution of vanillin (18) (2.5 g, 16 mmol) in acetonitrile (30 mL) was added to the suspension and the resulting mixture was refluxed under argon for 48 h. After cooling to room temperature, ice (100 g) was added and the mixture was neutralized with 5 M HCl (ca. 8 mL). The aqueous layer was extracted with CH₂Cl₂ (3 × 70 mL). The combined organic layers were dried over MgSO₄, filtered and evaporated in vacuo. The crude product was purified by column chromatography over silica gel (cyclohexane/EtOAc = 1:1) to afford (E)-3-(4-hydroxy-3-methoxyphenyl)acrylonitrile [(E)-14f] (1.5 g, 8.6 mmol, 52%) as a yellow solid. mp 97-98 °C (lit., ⁸ 93-96 °C); Rₚ 0.34 (cyclohexane/EtOAc = 1:1); UV λₘₚₙ (MeCN)/nm 215, 235, 293 and 319 (log ε/dm³ mol⁻¹ cm⁻¹ 4.08, 4.06, 4.11 and 4.20); IR (ATR) νₘₚₙ/cm⁻¹ 3391 (OH), 2208 (CN), 1598 (arom. C=C), 1516 (arom. C-C), 1466 (arom. C=C), 1340 (arom. C=C), 1272 (arom. C-O), 1165 (alkyl C-O), 1046 (trans -CH=CH-), 979 (trans -CH=CH-), 839 (arom. C-H) and 823 (arom. C-H); H NMR δ'H (300 MHz; CDCl₃) 2.36 (3H, s, 1-H), 3.93 (3H, s, OCH₃), 5.94 (1H, s, OH), 6.58 (1H, d, J3-H=4-H 16.3 Hz, 3-H), 6.93 (1H, d, J2'-H,6'-H 8.0 Hz, 5'-H), 7.06 (1H, d, J2'-H,6'-H 1.9 Hz, 2'-H), 7.09 (1H, dd, J3'-H,6'-H 8.1 Hz, J4',J6'-H 1.8 Hz, 6'-H) and 7.45 (1H, d, J3-H,4-H 16.1 Hz, 4-H); C NMR δ'C (75 MHz; CDCl₃) 27.28 (C-1), 55.94 (OCH₃), 109.28 (C-2'), 114.80 (C-5'), 123.50 (C-6'), 124.98 (C-3), 126.91 (C-1'), 143.72 (C-4), 146.86 (C-3'), 148.24 (C-4') and 198.40 (C-2); MS (EI, 70 eV) m/z 192 (M⁺, 100%), 145 (64), 134 (8), 117 (17) and 89 (8).
1509 (arom. C=C), 1278 (arom. C-O), 1158 (alkyl C-O), 968 (trans -CH=CH-), 849 (arom. C-H) and 797 (arom. C-H); 1H NMR δH (300 MHz; CDCl3) 3.93 (3H, s, OCH3), 5.95 (1H, s, OH), 5.70 (1H, d, 3J2-H,3-H 16.6 Hz, 2-H), 6.92 (1H, d, 4J2-H,6'-H 2.0 Hz, 2'-H), 6.93 (1H, d, 3J5'-H,6'-H 8.1 Hz, 5'-H), 7.00 (1H, dd, 3J5'-H,6'-H 8.3 Hz, 4J2-H,6'-H 1.9 Hz, 6'-H) and 7.30 (1H, d, 3J2-H,3-H 16.4 Hz, 3-H); 13C NMR δC (75 MHz; CDCl3) 56.00 (OCH3), 93.28 (C-2), 108.62 (C-2'), 114. 87 (C-5'), 118.62 (C-1), 122.39 (C-6'), 126.18 (C-1'), 146.87 (C-3'), 148.69 (C-4') and 150.37 (C-1); MS (EI, 70 eV) m/z 175 (M+, 100%), 145 (32), 132 (80), 104 (24) and 77 (18).

3.4 General experimental procedure II for the preparation of trisubstituted vanillidene derivatives of type 15

A solution of vanillin (18) (2.5 g, 16 mmol) and the β-dicarbonyl (16 mmol) in CH2Cl2 (40 mL) was treated with piperidine (70 μL, 0.70 mmol) and acetic acid (40 μL, 0.70 mmol). The solution was refluxed using a Dean Stark apparatus until the vanillin was consumed. The solvent was removed in vacuo and the crude product was purified by column chromatography over silica gel to give the trisubstituted vanillidene derivative.

3.4.1 Diethyl 2-(4-hydroxy-3-methoxybenzylidene)malonate (15a)

According to the general procedure II vanillin (18) (2.5 g, 16 mmol) and diethyl malonate (2.5 g, 16 mmol) were reacted for 14 h. After evaporation of the volatiles in vacuo the crude product was purified by column chromatography over silica gel (EtOAc/cyclohexane = 4:1) to afford diethyl 2-(4-hydroxy-3-methoxybenzylidene)malonate (15a) (4.3 g, 14 mmol, 90%) as a white solid. mp 104-105 °C (lit.,9 108-109 °C); Rf 0.60 (EtOAc/cyclohexane = 5:1); UV λmax (MeCN)/nm 326 (log ε/dm3 mol−1 cm−1 4.31); IR (ATR) ʋmax/cm−1 3478 (OH), 2975 (CH2, CH3), 1730 (C=O), 1682 (C=C), 1585 (arom. C=C), 1519 (arom. C=C), 1291 (arom. C-O), 1175 (C-O), 857 (arom. C-H) and 815 (arom. C-H); 1H NMR δH (300 MHz; CDCl3) 1.32 (6H, t, 3J1''a-H,2''a-H 7.2 Hz, 2''a-H and 2''b-H), 3.88 (3H, s, OCH3), 4.25-4.38 (4H, m, 1''a-H and 1''b-H), 6.90 (1H, d, 3J6''-H,5'-H 8.1 Hz, 5'-H), 7.02 (1H, d, 4J2'-H,6'-H 2.0 Hz, 2'-H), 7.05
(1H, dd, $^3J_{5',6',H}^{}$ 8.0 Hz, $^4J_{2',H,6',H}^{}$ 2.1 Hz, 6'-H) and 7.64 (1H, s, 7'-H); 13C NMR δC (75 MHz; CDCl$_3$) 13.97 (C-2"a or C-2"b), 14.14 (C-2"a or C-2"b), 55.84 (OCH$_3$), 61.44 (C-1"a or C-1"b), 61.61 (C-1"a or C-1"b), 111.36 (C-2'), 114.73 (C-5'), 123.55 (C-2), 124.77 (C-6'), 125.21 (C-1'), 142.09 (C-7'), 146.51 (C-3'), 148.20 (C-4'), 164.44 (C-1 or C-3), 167.27 (C-1 or C-3); MS (EI, 70 eV) m/z 294 (M$^+$, 100%), 249 (38), 220 (24), 176 (14), 148 (36); HRMS (EI, M$^+$) found: 294.1102 calc. for C$_{15}$H$_{18}$O$_6$: 294.1103.

3.4.2 3-(4-Hydroxy-3-methoxybenzylidene)pentene-2,4-dione (15b)

According to the general procedure II vanillin (18) (2.5 g, 16 mmol) and pentane-2,4-dione (2.0 g, 16 mmol) were reacted for 15 h. After evaporation of the volatiles in vacuo the crude product was purified by column chromatography over silica gel (CH$_2$Cl$_2$/MeOH = 40:1) to afford 3-(4-hydroxy-3-methoxybenzylidene)pentane-2,4-dione (15b) (3.7 g, 16 mmol, 96%) as a yellow solid. mp 132-133 °C (lit.,10 128-129 °C); R_f 0.60 (CH$_2$Cl$_2$/MeOH = 40:1); UV λ_{max} (MeCN)/nm 222, 246 and 332 (log ε/dm3 mol$^{-1}$ cm$^{-1}$ 4.05, 4.06 and 4.32); IR (ATR) $\tilde{\nu}_{max}$/cm$^{-1}$ 3367 (OH), 1693 (C=O), 1578 (arom. C=C), 1515 (arom. C=C), 1265 (arom. C-O), 1173 (C-O), 853 (arom. C-H) and 819 (arom. C-H); 1H NMR δH (300 MHz; CDCl$_3$) 2.32 (3H, s, 1-H or 5-H), 2.40 (3H, s, 1-H or 5-H), 3.88 (3H, s, OCH$_3$), 6.02 (1H, s, OH), 6.91 (1H, d, $^3J_{5',6',H}^{}$ 8.2 Hz, 5'-H), 6.92 (1H, d, $^3J_{2',H,6',H}^{}$ 2.1 Hz, 2'-H), 6.98 (1H, dd, $^3J_{5',6',H}^{}$ 8.2 Hz, $^4J_{2',H,6',H}^{}$ 2.1 Hz, 6'-H) and 7.40 (s, 1H, 7'-H); 13C NMR δC (75 MHz; CDCl$_3$) 26.32 (C-1 or C-5), 31.70 (C-1 or C-5), 55.94 (OCH$_3$), 111.49 (C-2'), 114.96 (C-5'), 125.03 (C-1'), 125.13 (C-1'), 140.08 (C-7'), 146.72 (C-3'), 148.35 (C-4'), 196.45 (C-2 or C-4) and 206.42 (C-2 or C-4); MS (EI, 70 eV) m/z 234 (M$^+$, 100%), 177 (62), 145 (26) and 43 (51); HRMS (EI, M$^+$) found: 234.0915 calc. for C$_{13}$H$_{14}$O$_4$: 234.0892.

3.4.3 Ethyl 2-(4-hydroxy-3-methoxybenzylidene)-3-oxo-butanoate (15c)
According to the general procedure II vanillin (18) (2.5 g, 16 mmol) and ethyl-3-oxobutanoate (2.0 g, 16 mmol) were reacted for 16 h. After evaporation of the volatiles in vacuo the crude product was purified by column chromatography over silica gel (CH₂Cl₂/MeOH = 40:1) to afford ethyl 2-(4-hydroxy-3-methoxybenzylidene)-3-oxobutanoate (15c) as an E/Z mixture (E:Z = 4:6; ¹H NMR (2.45 g, 11 mmol, 67%) as a white solid. mp 109-110 °C (lit., 10 110 °C); R₇ 0.46 (CH₂Cl₂/MeOH = 40:1); UV λₓₜₓ (MeCN)/nm 222, 243 and 331 (log ε/dm³ mol⁻¹ cm⁻¹ 4.24, 4.06 and 4.01); IR (ATR) νₓₜₓ/cm⁻¹ 3395 (OH), 3013 (CH₂), 1725 (C=O), 1578 (arom. C=C), 1518 (arom. C=C), 1265 (arom. C-O), 1173 (C-O), 853 (arom. C-H) and 811 (arom. C-H); ¹H NMR (E)-15c δₜ (500 MHz; CDCl₃) 1.29-1.32 (3H, t, 3-Jₜ,H,H 7.2 Hz, CH₂C₃H₇), 2.37 (3H, s, 4-H), 4.27 (2H, m, CH₂CH₃), 3.85 (3H, s, OCH₃), 5.98 (1H, s, OH), 6.88 (1H, d, 3-Jₜ,5',6'-H 8.0 Hz, 5'-H), 6.92 (1H, d, 4-Jₜ,2'-H,6'-H 1.9 Hz, 2'-H), 6.96 (1H, dd, 3-Jₜ,5',6'-H 1.8 Hz, 3-Jₜ,4'-H,6'-H 7.9 Hz, 6'-H) and 7.57 (1H, s, 7'-H); ¹H NMR (Z)-15c δₜ (500 MHz; CDCl₃) 1.29-1.32 (3H, t, 3-Jₜ,H,H 7.2 Hz, CH₂CH₃), 2.38 (3H, s, 4-H), 4.27 (2H, m, CH₂CH₃), 3.86 (3H, s, OCH₃), 5.98 (1H, s, OH), 6.90 (1H, d, 3-Jₜ,5',6'-H 7.9 Hz, 5'-H), 7.00 (1H, d, 4-Jₜ,2'-H,6'-H 1.9 Hz, 2'-H), 7.03 (1H, dd, 4-Jₜ,2'-H,6'-H 1.8 Hz, 3-Jₜ,5',6'-H 7.9 Hz, 6'-H) and 7.47 (1H, s, 7'-H); ¹³C NMR (E)-15c δₜ (125 MHz; CDCl₃) 13.93 (CH₂CH₃),* 31.24 (C-4), 55.80 (OCH₃),* 61.34 (CH₂CH₃), 111.64 (C-2'), 114.82 (C-5'), 124.78 (C-6'), 125.06 (C-1'),* 125.08 (C-6'),* 131.38 (C-2'), 140.66 (C-7'), 146.60 (C-3'), 148.11 (C-4'), 164.70 (C-1) and 204.16 (C-3); ¹³C NMR (Z)-15c δₜ (125 MHz; CDCl₃) 14.13 (CH₂CH₃),* 26.33 (C-4), 55.87 (OCH₃),* 61.63 (CH₂CH₃), 111.38 (C-2'), 114.83 (C-5'), 125.06 (C-1'),* 125.08 (C-6'),* 132.16 (C-2), 140.65 (C-7'), 146.63 (C-3'), 148.50 (C-4'), 168.40 (C-1) and 194.70 (C-3); MS (EI, 70 eV) m/z 264 (M⁺, 100%), 249 (44), 219 (20) and 177 (23); HRMS (EI, M⁺) found: 264.1006 calc. for C₁₄H₁₆O₅: 264.0998.

* value may be interchanged

3.4.4 2-(4-Hydroxy-3-methoxybenzylidene)malononitrile (15d)

According to the general procedure II vanillin (18) (2.5 g, 16 mmol) and malononitrile (1.06 g, 16 mmol) were reacted for 16 h. After evaporation of the volatiles in vacuo the crude
product was purified by column chromatography over silica gel (EtOAc/cyclohexane = 5:2) to afford 2-(4-hydroxy-3-methoxybenzylidene)malononitrile (15d) (2.93 g, 15 mmol, 89%) as a yellow solid. mp 131-132 °C (lit.,11 136-137 °C); Rf 0.80 (EtOAc/cyclohexane = 5:2); UV λ max (MeCN)/nm 245, 368 and 460 (log ε/dm 3 mol -1 cm -1 3.89, 4.28 and 3.34); IR (ATR) ~ν max/cm -1 3298 (OH), 2222 (CN), 1605 (C=C), 1514 (arom. C=C), 1291 (arom. C-O), 1187 (C-O), 867 (arom. C-H) and 818 (arom. C-H); 1 H NMR δ H (300 MHz; CDCl 3) 3.98 (s, 3H, OCH 3), 7.02 (1H, d, 3 J 6'-H,5'-H 8.3 Hz, 5'-H), 7.31 (1H, dd, 4 J 2'-H,6'-H 2.0 Hz, 3 J 5'-H,6'-H 8.3 Hz, 6'-H), 7.63 (1H, s, 7'-H) and 7.72 (1H, d, 4 J 2'-H,6'-H 1.9 Hz, 2'-H); 13 C NMR δ C (75 MHz, CDCl 3) 56.19 (OCH 3), 78.14 (C-2), 110.41 (C-2'), 113.61 (C-1 or C-3), 114.37 (C-1 or C-3), 115.21 (C-5'), 123.95 (C-1'), 128.98 (C-6'), 147.04 (C-3'), 152.15 (C-4') and 159.21 (C-7'); MS (EI, 70 eV) m/z 200 (M +, 100%), 185 (14), 157 (82) and 129 (25); HRMS (EI, M +) found: 200.0591 calc. for C 11 H 8 N 2 O 2: 200.0586.

4 Laccase-catalyzed dimerization of disubstituted vanillidene derivatives

4.1 General procedure III for the laccase-catalyzed oxidation of (E)-ferulic acid esters

A solution of a ferulic acid ester in an organic solvent was added to 0.1 M NaOAc buffer (pH 5.0). The laccase was added and the reaction was stirred under air at room temperature for different reaction times. After extraction with CH 2 Cl 2 (3 × 40 mL) the combined organic phases were dried over MgSO 4 , filtered and evaporated in vacuo. The crude product was purified by column chromatography over silica gel (cyclohexane/EtOAc) to afford the dihydrobenzofuran in analytical pure form.

4.1.1 Methyl (E)-3-[(2R*,3R*)-2,3-dihydro-2-(4-hydroxy-3-methoxy-phenyl)-7-methoxy-3-methoxycarbonyl-1-benzofuran-5yl]propenoate (17a)

According to the general procedure III a solution of 14a (80 mg, 0.4 mmol) in DMSO (1.6 mL) and laccase from Trametes versicolor (4 U, 0.4 mg) were reacted in NaOAc buffer (0.1 M, pH 5.0, 78.4 mL) for 1 h at room temperature. After evaporation of the volatiles in vacuo the crude product was purified by flash chromatography over silica gel (cyclohexane/EtOAc = 7:5) to afford methyl (E)-3-[(2R*,3R*)-2,3-dihydro-2-(4-hydroxy-3-methoxy-phenyl)-7-
methoxy-3-methoxycarbonyl-1-benzofuran-5-yl]propenoate (17a) (30 mg, 0.07 mmol, 38%) as a white solid: mp 155 °C (from MeOH) (lit.,12 151-152 °C); Rf 0.20 (cyclohexane/EtOAc = 7:5); UV λmax (EtOH)/nm 326 (log ε/dm3 mol−1 cm−1 4.26); IR (ATR) νmax/cm−1 3374 (OH), 2949 (CH3), 1741 (C=O), 1633 (C=C), 1520 (arom. C=C), 1264 (arom. C-O), 1162 (alkyl C-O), 987 (trans –CH=CH-), 856 (arom. C-H) and 831 (arom. C-H); 1H NMR δH (300 MHz; CDCl3) 3.76 (3H, s, 1’’-H), 3.79 (3H, s, 2’’’-H), 3.92 (3H, s, OCH3’’), 3.98 (3H, s, OCH3’’’), 4.34 (1H, d, J2’-H,3’-H 8.2 Hz, 3’-H), 5.74 (1H, s, OH), 6.11 (1H, d, J2’-H,3’-H 8.21 Hz, 2’-H), 6.32 (1H, d, J2’-H,3’-H 16.0 Hz, 2-H), 6.90 (3H, s, 2’’, 6’’, 5’’-H), 7.02 (1H, s, 6’-H), 7.18 (1H, s, 4’-H) and 7.64 (1H, d, J2’-H,3’-H 16.0 Hz, 3-H); 13C NMR δC (75 MHz; CDCl3) 51.92 (C-1’’’), 53.15 (C-2’’’’), 55.76 (C-3’’), 56.29 (OCH3’’’), 56.41 (OCH3’’), 87.74 (C-2’’), 108.99 (C-2’’’),* 112.36 (C-6’’), 114.79 (C-5’’’), 115.85 (C-2), 118.17 (C-4’’), 119.73 (C-6’’’),* 125.97 (C-9’), 128.86 (C-5’’), 131.63 (C-1’’’’), 145.00 (C-3), 145.03 (C-7’), 146.34 (C-4’’’), 146.97 (C-3’’’), 150.23 (C-8’), 167.90 (C-1) and 171.02 (C-1’’’’); MS (EI, 70 eV) m/z 414 (M+, 76%), 382 (95) and 350 (100).

* value may be interchanged

4.1.2 Ethyl (E)-3-[(2R*,3R*)-2,3-dihydro-2-(4-hydroxy-3-methoxy-phenyl)-7-methoxy-3-ethoxycarbonyl-1-benzofuran-5-yl]propenoate (17b)

According to the general procedure III a solution of 14b (90 mg, 0.4 mmol) in DMSO (1.6 mL) and laccase from Trametes versicolor (4 U, 0.4 mg) were reacted in NaOAc buffer (0.1 M, pH 5.0, 78.4 mL) for 16 h at room temperature. After evaporation of the volatiles in vacuo the crude product was purified by flash chromatography over silica gel (cyclohexane/EtOAc = 3:1) to afford ethyl (E)-3-[(2R*,3R*)-2,3-dihydro-2-(4-hydroxy-3-methoxy-phenyl)-7-methoxy-3-ethoxycarbonyl-1-benzofuran-5-yl]propenoate (17b) (26 mg, 0.06 mmol, 29%) as a white solid: mp 150-151 °C (lit.,2 153°C); Rf 0.10 (cyclohexane/EtOAc = 3:1); UV λmax (CH2Cl2)/nm 326 (log ε/dm3 mol−1 cm−1 4.28); IR (ATR) νmax/cm−1 3411 (OH), 2980 (CH2, CH3), 1737 (C=O), 1709 (C=O), 1636 (C=C), 1520 (arom. C=C), 1491 (arom. C=C), 1262 (arom. C-O), 1235 (arom. C-O), 1161 (alkyl C-O), 1139 (alkyl C-O), 1016 (trans –CH=CH-), 856 (arom. C-H) and 838 (arom. C-H); 1H NMR δH (300 MHz; CDCl3) 1.34 (6H, t, J1’’-H,2’’-H 7.2 Hz, 2’’-H, 3’’’-H), 3.87 (3H, s, OCH3’’’), 3.91 (3H, s, OCH3’’), 4.24-4.25 (5H, m, 3’-H,
2''''-H, 1''''-H), 5.67 (1H, s, OH), 6.11 (1H, d, $^3J_{2',H,3':H}$ 8.2 Hz, 2'-H), 6.30 (1H, d, $^3J_{2',H,3':H}$ 15.8 Hz, 2-H), 6.90 (3H, s, 2''-H, 5''-H, 6''-H), 7.02 (1H, s, 6'-H), 7.20 (1H, s, 4'-H) and 7.64 (1H, d, $^3J_{2',H,3':H}$ 16.0 Hz, 3-H); 13C NMR δ_C (75 MHz; CDCl$_3$) 14.25 (C-2'''' or C-3'''''), 14.32 (C-2'''' or C-3'''''), 55.54 (C-3'''), 55.98 (OCH$_3$'''), 56.08 (OCH$_3$'), 60.39 (C-1'''''), 61.85 (C-2'''''), 87.46 (C-2'), 108.73 (C-6''), 111.88 (C-6'), 114.68 (C-5'''), 115.93 (C-2), 117.86 (C-4'), 119.46 (C-2''''), 125.84 (C-9'), 128.64 (C-5'), 131.43 (C-1'''), 144.51 (C-3), 144.69 (C-7'), 146.02 (C-4'''), 146.68 (C-3'''), 149.89 (C-8'), 167.20 (C-1) and 170.21 (C-1'''''); MS (EI, 70 eV) m/z 442 (M+, 74%), 396 (78) and 350 (100).

4.1.3 n-Propyl (E)-3-[(2R*,3R*)-2,3-dihydro-2-(4-hydroxy-3-methoxy-phenyl)-7-methoxy-3-propioxycarbonyl-1-benzofuran-5yl]propenoate (17c)

According to the general procedure III a solution of 14c (97 mg, 0.4 mmol) in DMSO (1.6 mL) and laccase from Trametes versicolor (4 U, 0.4 mg) were reacted in NaOAc buffer (0.1 M, pH 5.0, 78.4 mL) for 16 h at room temperature. After evaporation of the volatiles in vacuo the crude product was purified by column chromatography over silica gel (cyclohexane/EtOAc = 3:1) to afford n-propyl (E)-3-[(2R*,3R*)-2,3-dihydro-2-(4-hydroxy-3-methoxy-phenyl)-7-methoxy-3-propioxycarbonyl-1-benzofuran-5yl]propenoate (17c) (23 mg, 0.05 mmol, 23%) as a white solid. mp 122-123 °C; R_f 0.15 (cyclohexane/EtOAc = 3:1); UV λ_{max} (CH$_2$Cl$_2$)/nm 325 (log ε/dm3 mol$^{-1}$ cm$^{-1}$ 4.29); IR (ATR) $\tilde{\nu}_{max}$/cm$^{-1}$ 3408 (OH), 2971 (CH$_2$, CH$_3$), 1734 (C=O), 1717 (C=O), 1632 (C=C), 1519 (arom. C=C), 1489 (arom. C=C), 1262 (arom. C=C), 1162 (alkyl C-O), 1139 (alkyl C-O), 996 (trans –CH=CH–), 856 (arom. C-H) and 829 (arom. C-H); 1H NMR δ_H (300 MHz; CDCl$_3$) 1.04 (3H, t, $^3J_{3''''-H,4''''-H}$ 7.2 Hz, 4''''-H), 1.04 (3H, t, $^3J_{3''''-H,4''''-H}$ 7.2 Hz, 3''''-H), 1.76 (2H, q, $^3J_{3'''-H,2'''-H}$ 7.3 Hz, 3'''-H), 1.78 (2H, q, $^3J_{3'''-H,2'''-H}$ 7.3 Hz, 2'''-H), 4.17 (4H, m, 1'''-H, 2''''-H), 3.87 (3H, s, OCH$_3$''), 3.92 (3H, s, OCH$_3$'), 4.33 (1H, d, $^3J_{2',H,3':H}$ 8.2 Hz, 3'-H), 5.65 (1H, s, OH), 6.11 (1H, d, $^3J_{2',H,3':H}$ 8.2 Hz, 2''-H), 6.31 (1H, d, $^3J_{2',H,3':H}$ 15.8 Hz, 2-H), 6.90 (3H, s, 2''-H, 5''-H, 6''-H), 7.03 (1H, s, 6'-H), 7.19 (1H, s, 4'-H) and 7.63 (1H, d, $^3J_{2',H,3':H}$ 16.0 Hz, 3-H); 13C NMR δ_C (75 MHz; CDCl$_3$) 10.40 (C-3''' or C-4'''''), 10.44 (C-3''' or C-4'''''), 21.99 (C-2'''' or C-3''''), 22.11 (C-2'''' or C-4'''''), 55.62 (C-3'), 55.98 (OCH$_3$''), 56.08 (OCH$_3$'), 66.05 (C-1'''''), 67.44
(C-2''), 87.47 (C-2'), 108.71 (C-6'), 114.48 (C-5''), 115.96 (C-2), 117.94 (C-4'), 119.47 (C-6''), 125.84 (C-9'), 128.63 (C-5''), 131.48 (C-1''), 144.48 (C-3), 144.70 (C-7'), 146.02 (C-3''), 146.67 (C-4''), 149.89 (C-8'), 167.30 (C-1) and 170.29 (C-1'''); MS (EI, 70 eV) m/z 470 (M⁺, 86%), 410 (97) and 350 (100); HRMS (EI, M⁺) found: 470.1949 calc. for C₂₆H₃₀O₈: 470.1941.

4.1.4 n-Butyl (E)-3-[(2R*,3R*)-2,3-dihydro-2-(4-hydroxy-3-methoxy-phenyl)-7-methoxy-3-butoxycarbonyl-1-benzofuran-5-yl]propenoate (17d)

According to the general procedure III a solution of 14d (530 mg, 2.1 mmol) in DMSO (8 mL) and laccase from *Trametes versicolor* (120 U, 12 mg) were reacted in NaOAc buffer (0.1 M, pH 5.0, 482 mL) as the solvent for 3 h at room temperature. After evaporation of the volatiles *in vacuo* the crude product was purified by column chromatography over silica gel (CH₂Cl₂) to afford n-butyl (E)-3-[(2R*,3R*)-2,3-dihydro-2-(4-hydroxy-3-methoxy-phenyl)-7-methoxy-3-butoxycarbonyl-1-benzofuran-5-yl]propenoate (17d) (117 mg, 0.23 mmol, 22%) as a white solid: mp 121-123°C; Rf 0.28 (cyclohexane/EtOAc = 7:3); UV λmax (CH₂Cl₂)/nm 325 (log ε/dm⁻³ mol⁻¹ cm⁻¹ 4.30); IR (ATR) νmax/cm⁻¹ 3532 (OH), 2958 (CH₂, CH₃), 1724 (C=O), 1705 (C=O), 1630 (C=C), 1515 (arom. C=C), 1502 (arom. C=C), 1263 (alkyl C-O), 982 (trans –CH=CH-), 858 (arom. C-H) and 823 (arom. C-H); 1H NMR δH (300 MHz; CDCl₃) 0.95 (3H, t, 3J₄''''-H,5''''-H 7.4 Hz, 5''''-H), 0.97 (3H, t, 3J₃'''-H,4'''-H 7.4 Hz, 4'''-H), 1.42 (2H, ov, 4''''-H), 1.44 (2H, ov, 3'''-H), 4.20 (2H, ov, 1'’'-H), 4.21 (2H, ov, 2''''-H), 4.32 (1H, d, 3J₂-H,3'-H 8.3 Hz, 3'-H), 5.63 (1H, s, OH), 5.61 (1H, d, 3J₂-H,3'-H 8.2 Hz, 2'-H), 6.31 (1H, d, 3J₂-H,3'-H 8.3 Hz, 3'-H), 6.90 (3H, s, 2'''-H, 5'''-H, 6'''-H), 7.02 (1H, s, 6'-H), 7.19 (1H, s, 4'-H) and 7.63 (1H, d, 3J₂-H,3'-H 15.8 Hz, 3'-H); 13C NMR δC (75 MHz; CDCl₃) 13.64 (C-4'''', 19.17 (C-4'''''), 19.21 (C-3'''''), 30.63 (C-3'''''), 30.81 (C-1'''''), 35.63 (C-3'), 56.01 (OCH₃'''), 64.34 (C-2'''''), 65.74 (C-2'''''), 87.48 (C-2''), 106.72 (C-2''), 111.98 (C-6'''), 114.49 (C-5'''), 116.00 (C-2), 117.86 (C-4''), 119.59 (C-6''), 125.87 (C-9'), 128.64 (C-5''), 131.50 (C-1'''), 134.47 (C-3), 144.71 (C-7'), 146.04 (C-4''), 146.69 (C-3'''), 149.90 (C-8'), 167.32 (C-1) and 170.31 (C-1'''''); MS (EI, 70 eV) m/z 498
4.1.5 4-(E)-[(2R*,3R*)]-2,3-Dihydro-2-(4-hydroxy-3-methoxy-phenyl)-7-methoxy-3-acetyl-1-benzofuran-5-yl]but-3-en-2-one (17e)

According to the general procedure III a solution of 14e (80 mg, 0.4 mmol) in DMSO (1.6 mL) and laccase from Trametes versicolor (4U, 0.4 mg) were reacted in NaOAc buffer (0.1 M, pH 5.0, 78.4 mL) as the solvent for 9 h at room temperature. After evaporation of the volatiles in vacuo the crude product was purified by column chromatography over silica gel (CH$_2$Cl$_2$/MeOH = 20:0.1) to afford 4-(E)-[(2R*,3R*)]-2,3-dihydro-2-(4-hydroxy-3-methoxy-phenyl)-7-methoxy-3-acetyl-1-benzofuran-5-yl]but-3-en-2-one (17e) (20 mg, 0.05 mmol, 25%) as a white oil: R$_f$ 0.12 (CH$_2$Cl$_2$/MeOH = 20:0.1); UV λ_{max} (CH$_2$Cl$_2$)/nm 336 (log ε/dm3 mol$^{-1}$ cm$^{-1}$ 1.21); IR (ATR) ν_{max}/cm$^{-1}$ 3377 (OH), 2963 (CH$_3$), 1713 (C=O), 1665 (C=O), 1588 (arom. C=C), 1259 (arom. C-O), 1145 (alkyl C-O), 1030 (trans-CH=CH-), 909 (arom. C-H) and 801 (arom. C-H); 1H NMR δ_H (300 MHz; CDCl$_3$) 2.35 (3H, s, 2''''-H), 2.37 (3H, s, 1-H), 3.86 (3H, s, OCH$_3$''), 3.96 (3H, s, OCH$_3$'), 4.39 (1H, d, 3J$_{2'\text{-}3'}$ 6.7 Hz, 3'-H), 5.70 (1H, s, OH), 6.07 (1H, d, 3J$_{2'\text{-}3'}$ 6.7 Hz, 2'-H), 6.60 (1H, d, 3J$_{2'\text{-}3'}$ 16.3 Hz, 3-H), 6.84 (2H, s, 2''-H, 6''-H), 6.87 (1H, s, 5''-H), 7.06 (1H, s, 6'-H), 7.11 (1H, s, 4'-H) and 7.46 (1H, d, 3J$_{2'\text{-}3'}$ 16.3 Hz, 4-H); 13C NMR δ_C (75 MHz; CDCl$_3$) 27.44 (C-1), 28.77 (C-2'''''), 55.98 (OCH$_3$''), 56.11 (OCH$_3$'), 63.78 (C-3'), 86.80 (C-2'), 108.58 (C-6'' or C-2'''), 112.14 (C-6'), 114.60 (C-5'''), 117.78 (C-4'), 121.59 (C-6'' or C-2'''), 125.29 (C-3), 125.92 (C-9'), 128.64 (C-5'''), 131.58 (C-1'''), 143.23 (C-4), 145.03 (C-7''), 146.10 (C-4'''), 146.74 (C-3'''), 150.45 (C-8'), 198.17 (C-2) and 203.56 (C-1'''''); MS (EI, 70 eV) m/z 382 (M$^+$, 40%), 380 (12), 365 (8), 340 (100) and 311 (16); HRMS (EI, M$^+$) found: 382.1411 calc. for C$_{22}$H$_{22}$O$_6$: 382.1416.

4.2 Treatment of 14a with aerial O$_2$ in the absence of any catalyst

A solution of 14a (84 mg, 0.4 mmol) in DMSO (1.6 mL) was stirred in NaOAc buffer (0.1 M, pH 5.0, 78.4 mL) as the solvent for 1 h under air at room temperature. After extraction with CH$_2$Cl$_2$ (3 x 30 mL) the combined organic phases were analyzed by TLC. Only 14a could be detected.
5 Laccase-catalyzed dimerization of trisubstituted vanillidene derivatives

5.1 General experimental procedure IV for the laccase-catalyzed oxidation of trisubstituted vanillidene derivatives of type 15

A solution of a vanillidene derivative 15 in DMSO (8 mL) was added to NaOAc buffer (0.1 M, pH 5.0, 72 mL). Laccase from *Trametes versicolor* (4 U, 0.4 mg) was added and the reaction mixture was stirred under air at room temperature. After extraction with CH$_2$Cl$_2$ (3 × 30 mL) the combined organic phases were dried over MgSO$_4$, filtered and evaporated *in vacuo*. The crude product was purified by flash chromatography over silica gel to afford the product in analytical pure form.

5.1.1 5,5’-Di(2,2-diethoxycarbonylvinyl)-2,2’-dihydroxy-3,3’-dimethoxybiphenyl (19a)

According to the general procedure IV a solution of 15a (118 mg, 0.4 mmol) and laccase were reacted in NaOAc buffer for 22 h at room temperature. After evaporation of the volatiles *in vacuo* the crude product was purified by flash chromatography over silica gel (CH$_2$Cl$_2$/MeOH =40:0.5) to afford 5,5’-di(2,2-diethoxycarbonylvinyl)-2,2’-dihydroxy-3,3’-dimethoxybiphenyl (19a) (93 mg, 0.16 mmol, 79%) as a yellow oil: R$_f$ 0.1 (CH$_2$Cl$_2$/MeOH =40:0.5); UV λ_{max} (MeCN)/nm 242, 332 and 387 (log ε/dm3 mol$^{-1}$ cm$^{-1}$ 3.11, 3.21 and 2.86); IR (ATR) $\tilde{\nu}_{\text{max}}$/cm$^{-1}$ 3418 (OH), 2982 (CH$_2$, CH$_3$), 1717 (C=O), 1592 (arom. C=C), 1212 (arom. C-O), 1178 (alkyl C-O), 859 (arom. C-H) and 728 (arom. C-H); 1H NMR δH (300 MHz; DMSO-d_6) 1.25-1.36 (12H, t, 3$''$-H,5$''$-H 7.0 Hz, 3$'''$-H and 5$''$-H), 3.92 (6H, s, OCH$_3$ and OCH$_3'$), 4.25-4.36 (8H, m, 2$'''$-H and 4$''$-H), 7.04 (4H, s, 4-H, 4'-H, 6-H and 6'-H) and 7.65 (2H, s, 1$''$-H); 13C NMR δC (75MHz; DMSO-d_6) 13.96 (C-3$'''$ or C-5’’’), 14.14 (C-3’’’a or C-5’’’), 56.09 (OCH$_3$ and OCH$_3'$), 61.47 (C-2’’’ or C-4’’’), 61.65 (C-2’’’ or C-4’’’), 110.42 (C-4, C-4’ or C-6, C-6’), 123.29 (C-1 and C-1’), 123.97 (C-2’’’), 124.84 (C-5 and C-5’’’), 110.42 (C-4, C-4’ or C-6, C-6’), 123.29 (C-1 and C-1’), 123.97 (C-2’’’), 124.84 (C-5 and C-5’’’), 110.42 (C-4, C-4’ or C-6, C-6’), 141.84 (C-1’’’), 145.50 (C-3 and C-3’), 147.01 (C-2 and C-...
2'), 164.37 (C-1''' or C-3''') and 167.14 (C-1''' or C-3'''); MS (ESI, pos.) m/z 609 [(M + Na)\(^+\), 84\%], 604 [(M + NH\(_4\))\(^+\), 100] and 587 [(M + H)\(^+\), 81]; HRMS (ESI, pos.) found: 587.2123 [C\(_{30}\)H\(_{34}\)O\(_{12}\) + H]\(^+\) calc. for C\(_{30}\)H\(_{35}\)O\(_{12}\): 587.2129.

* value may be interchanged

5.1.2 5,5'-Di(2,2-diacetylvinyl)-2,2'-dihydroxy-3,3'-dimethoxybiphenyl (19b)

According to the general procedure IV a solution of 15b (98 mg, 0.4 mmol) and laccase were reacted in NaOAc buffer for 5 h at room temperature. After evaporation of the volatiles in vacuo the crude product was purified by flash chromatography over silica gel (CH\(_2\)Cl\(_2\)/MeOH = 40:1) to afford 5,5'-di(2,2-diacetylvinyl)-2,2'-dihydroxy-3,3'-dimethoxybiphenyl (19b) (91 mg, 0.2 mmol, 93%) as a yellow solid: mp 210-213 °C; R\(_f\) 0.20 (CH\(_2\)Cl\(_2\)/MeOH = 40:1); UV \(\lambda\)\(_{\text{max}}\) (MeCN)/nm 220, 248 and 337 (log \(\varepsilon\)/dm\(^3\) mol\(^{-1}\) cm\(^{-1}\) 4.34, 4.35 and 4.52); IR (ATR) \(\tilde{\nu}\)\(_{\text{max}}\)/cm\(^{-1}\) 3379 (OH), 1707 (C=O), 1581 (arom. C=C), 1501 (arom. C=C), 1260 (arom. C-O), 1175 (alkyl C-O) and 815 (arom. C-H); \(^1\)H NMR \(\delta\) (300 MHz; DMSO-d\(_6\)) 2.23 (6H, s, 2'''-H or 4''-H), 2.35 (6H, s, 2'''-H or 4'''-H), 3.80 (6H, s, OCH\(_3\) and OCH\(_3\)'), 6.90 (2H, s, 6-H and 6'-H), 7.04 (2H, s, 4-H and 4'-H) and 7.60 (s, 2H, 1''-H); \(^13\)C NMR \(\delta\) (75MHz; DMSO-d\(_6\)) 26.09 (C-2''' or C-4'''), 31.40 (C-2''' or C-4'''), 55.87 (OCH\(_3\) and OCH\(_3\)'), 112.33 (C-4 and C-4'), 123.03 (C-5 and C-5'), 125.06 (C-1 and C-1'), 126.16 (C-6 and C-6'), 139.65 (C-2'''), 140.14 (C-1'''), 147.08 (C-2 and C-2'), 147.69 (C-3 and C-3'), 197.20 (C-1''' or C-3''') and 206.37 (C-1''' or C-3'''); MS (ESI, pos.) m/z 489 [(M + Na)\(^+\), 100\%], 484 [(M + NH\(_4\))\(^+\), 18] and 467 [(M + H)\(^+\), 65]; HRMS (ESI, pos.) found: 467.1700 [C\(_{26}\)H\(_{26}\)O\(_8\) + H]\(^+\) calc. for C\(_{26}\)H\(_{27}\)O\(_8\): 467.1706.
5.1.3 5,5'-Di(2-acetyl-2-ethoxycarbonylviny l)-2,2'-dihydroxy-3,3'-dimethoxybiphenyl (19c)

According to the general procedure IV a solution of 15c (88 mg, 0.4 mmol) and laccase were reacted in NaOAc buffer for 3 h at room temperature. After evaporation of the volatiles in vacuo the crude product was purified by column chromatography over silica gel (CH₂Cl₂/MeOH = 40:1) to afford a mixture of the three E/Z-isomers of 5,5'-di(2-acetyl-2-ethoxycarbonylviny l)-2,2'-dihydroxy-3,3'-dimethoxybiphenyl (19c) (76 mg, 0.17 mmol, 86%) as a yellow oil: Rᵋ 0.30 (CH₂Cl₂/MeOH = 30:1); UV λ_{max} (MeCN)/nm 248 and 335 (log ε/dm³ mol⁻¹ cm⁻¹ 4.21 and 4.37); IR (ATR) ν_{max}/cm⁻¹ 3359 (OH), 2982 (CH₂, CH₃), 1716 (C=O), 1586 (arom. C=C), 1492 (arom. C=C), 1213 (arom. C-O), 1181 (alkyl C-O), 857 (arom. C-H) and 814 (arom. C-H); ¹H NMR (E)/(E)-19c δ_H (500 MHz; CDCl₃) 1.30 (6H, t, J_{4''-H,5''-H} 7.03 Hz, 5''-H), 2.59 (6H, s, 2'''-H), 3.89 (6H, s, OCH₃ and OCH₃'),* 4.26 (4H, q, J_{4''-H,5''-H} 6.98 Hz, 4''-H), 6.95 (2H, d, J_{4-H,6-H} 1.85 Hz, 6-H and 6'-H), 7.00 (2H, d, J_{4-H,6-H} 2.00, J_{4'-H,6'-H} 2.00 Hz, 4-H and 4'-H) and 7.57 (2H, s, 1''-H); ¹³C NMR (E)/(E)-19c δ_C (125MHz; CDCl₃) 14.13 (C-5''), 31.26 (C-2''''), 56.059(OCH₃ and OCH₃'),* 61.32 (C-4'''), 126.72 (C-6 and C-6'), 124.63 (C-1 and C-1'), 124.68 (C-5 and C-5'), 110.83 (C-4 and C-4'), 131.72 (C-2'''), 141.15 (C-1'''), 147.13 (C-3 and C-3'), 145.51 (C-2 and C-2'), 164.61 (C-3''') and 203.93 (C-1'''''); ¹H NMR (Z)/(Z)-19c δ_H (500 MHz; CDCl₃) 1.27 (6H, t, J_{4''-H,5''-H} 7.03 Hz, 5''-H), 2.37 (6H, s, 2'''-H), 3.89(6H, s, OCH₃ and OCH₃'),* 4.26 (4H, q, J_{4''-H,5''-H} 6.98 Hz, 4''-H), 7.05 (2H, d, J_{4-H,6-H} 2.07, J_{4'-H,6'-H} 2.07 Hz, 6-H and 6'-H), 7.07 (2H, d, J_{4-H,6-H} 2.00, J_{4'-H,6'-H} 2.00 Hz, 4-H and 4'-H) and 7.46 (2H, s, 1'''-H); ¹³C NMR (Z)/(Z)-19c δ_C (125 MHz; CDCl₃) 13.91 (C-5''), 26.29 (C-2''''), 56.11(OCH₃ and OCH₃'),* 61.62 (C-4'''), 127.23 (C-6 and C-6'), 124.61 (C-1 and C-1'), 124.68 (C-5 and C-5'), 110.43 (C-4 and C-4'), 132.49 (C-2'''), 147.27 (C-3 and C-3'), 145.93 (C-2 and C-2'), 168.23 (C-3'''') and 194.59 (C-1'''''); MS (ESI, pos.) m/z 549 [(M + Na)⁺, 100%], 544 [(M + NH₄)⁺, 21] and 527 [(M + H)⁺, 44]; HRMS (ESI, pos.) found: 527.1912 [C₂₈H₃₀O₁₀ + H]⁺ calc. for C₂₈H₃₁O₁₀: 527.1917.

* value may be interchanged
The signals of \((E)/(Z)\)-isomer are overlapped with the signals of the \((E)/(E)\)- and the \((Z)/(Z)\)-isomer.

5.1.4 5,5’-Di(2,2-dicyanovinyl)-2,2’-dihydroxy-3,3’-dimethoxybiphenyl (19d)

According to the general procedure IV a solution of 15d (80 mg, 0.4 mmol) and laccase were reacted in NaOAc buffer for 21 h at room temperature. After evaporation of the volatiles in vacuo the crude product was washed with EtOAc/cyclohexane (5:2) (3 × 3 mL) to afford 5,5’-di(2,2-dicyanovinyl)-2,2’-dihydroxy-3,3’-dimethoxybiphenyl (19d) (85 mg, 0.2 mmol, quantitativ) as a yellow solid: mp > 300 °C (lit.,\(^{13}\) > 300 °C); UV \(\lambda_{\text{max}}\) (MeCN)/nm 259, 376 and 446 (log \(\varepsilon\)/dm\(^3\) mol\(^{-1}\) cm\(^{-1}\) 4.15, 4.49 and 4.00); IR (ATR) \(\nu_{\text{max}}\)/cm\(^{-1}\) 3388 (OH), 2227 (CN), 1593 (C=C), 1504 (arom. C=C), 1293 (arom. C-O), 1184 (alkyl C-O) and 845 (arom. C-H); \(^1\)H NMR \(\delta_H\) (300 MHz; DMSO-\(d_6\)) 3.90 (6H, s, OCH\(_3\) and OCH\(_3\)’), 7.46 (2H, d, \(^4\)J\(_{4,1,6,6'}\) 1.9 Hz, 6-H and 6’-H), 7.71 (2H, d, \(^4\)J\(_{4,1,6,6'}\) 1.9 Hz, 4-H and 4’-H) and 8.31 (2H, s, 1''-H); \(^{13}\)C NMR \(\delta_C\) (75 MHz; DMSO-\(d_6\)) 55.96 (OCH\(_3\) and OCH\(_3\)’), 75.33 (C-2’’), 111.72 (C-4 and C-4’), 114.30 (C-1’’’ or C-3’’’), 115.08 (C-1’’’ or C-3’’’), 122.23 (C-5 and C-5’), 124.92 (C-1 and C-1’), 129.22 (C-6 and C-6’), 147.94 (C-3 and C-3’), 151.61 (C-2 and C-2’) and 160.44 (C-1’’’); MS (ESI, pos.) \(m/z\) 421 [(M + Na),\(^+\) 100%]; HRMS (ESI, pos.) found: 421.0907 \([\text{C}_{22}\text{H}_{14}\text{N}_4\text{O}_4 + \text{Na}]^+\) calc. for \(\text{C}_{22}\text{H}_{14}\text{N}_4\text{O}_4\text{Na}\): 421.0913.

5.2 Treatment of trisubstituted vanillidene derivatives 15 with aerial O\(_2\) in the absence of any catalyst

A solution of 15 (0.4 mmol) in DMSO (8 mL) was stirred in NaOAc buffer (0.1 M, pH 5.0, 72 mL) as the solvent under air at room temperature for the reaction times given in Table 3. After extraction with CH\(_2\)Cl\(_2\) (3 × 30 mL) the combined organic phases were analyzed by TLC. Only 15 could be detected.
6 Enantiomeric analysis of 17a-d by chiral HPLC

The enantiomers of 17a were separated by chiral HPLC (CHIRALPAK IB column; 250 mm × 4.60 mm, 5 μ; n-hexane/EtOAc = 4:6; flow rate 1 mL/min; UV detection λ 280 nm) to afford the two enantiomers (\(t_R = 5.38\) min, \(t_R = 6.27\) min) (Fig. 1). The enantiomeric excess was calculated from the peak areas to ee (%) = 1.30.

![Fig. 1. HPLC chromatogram of the separation of the enantiomers of 17a on an analytical column with a chiral stationary phase.](image1)

The enantiomers of 17b were separated by chiral HPLC (CHIRALPAK IB column; 250 mm × 4.60 mm, 5 μ; n-hexane/EtOH = 5:2; flow rate 1 mL/min; UV detection λ 280 nm) to afford the two enantiomers (\(t_R = 7.05\) min, \(t_R = 8.05\) min) (Fig. 2). The enantiomeric excess was calculated from the peak areas to ee (%) = 0.66.

![Fig. 2. HPLC chromatogram of the separation of the enantiomers of 17b on an analytical column with a chiral stationary phase.](image2)
The enantiomers of 17c were separated by chiral HPLC (CHIRALPAK IB column; 250 mm × 4.60 mm, 5 μ; n-hexane/EtOH = 5:1; flow rate 1 mL/min; UV detection λ 280 nm) to afford the two enantiomers ($t_R = 10.29$ min, $t_R = 11.95$ min) (Fig. 3). The enantiomeric excess was calculated from the peak areas to ee (%) = 6.00.

![HPLC chromatogram of the separation of the enantiomers of 17c](image1)

Fig. 3. HPLC chromatogram of the separation of the enantiomers of 17c on an analytical column with a chiral stationary phase.

The enantiomers of 17d were separated by chiral HPLC (CHIRALPAK IB column; 250 mm × 4.60 mm, 5 μ; n-hexane/EtOAc = 3:1; flow rate 1 mL/min; UV detection λ 280 nm) to afford the two enantiomers ($t_R = 10.56$ min, $t_R = 12.06$ min) (Fig. 4). The enantiomeric excess was calculated from the peak areas to ee (%) = 6.00.

![HPLC chromatogram of the separation of the enantiomers of 17d](image2)

Fig. 4. HPLC chromatogram of the separation of the enantiomers of 17d on an analytical column with a chiral stationary phase.
Fig. 5. 1H (300 MHz) and 13C (75 MHz) NMR spectra of 16 in DMSO-d_6.

Copies of 1H and 13C NMR spectra14
Fig. 6. 1H (300 MHz) and 13C (75 MHz) NMR spectra of (E)-14a in CDCl$_3$.
Fig. 7. 1H (300 MHz) and 13C (75 MHz) NMR spectra of (E)-14b in CDCl$_3$.

Electronic Supplementary Material (ESI) for Green Chemistry
This journal is © The Royal Society of Chemistry 2012
Fig. 8. 1H (300 MHz) and 13C (75 MHz) NMR spectra of (E)-14c in CDCl$_3$.
Fig. 9. 1H (300 MHz) and 13C (75 MHz) of (E)-14d in CDCl$_3$.
Fig. 10. 1H (300 MHz) and 13C (75 MHz) NMR spectra of (E)-14e in CDCl$_3$.

Electronic Supplementary Material (ESI) for Green Chemistry
This journal is © The Royal Society of Chemistry 2012
Fig. 11. 1H (300 MHz) and 13C (75 MHz) NMR spectra of (E)-14f in CDCl$_3$.
Fig. 12. 1H (300 MHz) and 13C (75 MHz) NMR spectra of 15a in CDCl$_3$.
Fig. 13. 1H (300 MHz) and 13C (75 MHz) NMR spectra of 15b in CDCl$_3$.
Fig. 14. 1H (500 MHz) and 13C (125 MHz) NMR spectra of 15c in CDCl$_3$.
Fig. 15. Part of HSQMBC (500, 125 MHz) NMR spectrum of 15c in CDCl₃ used for the determination of E and Z isomers from the mixture.
Fig. 16. 1H (300 MHz) and 13C (75 MHz) NMR spectra of 15d in CDCl$_3$.
Fig. 17. 1H (300 MHz) and 13C (75 MHz) NMR spectra of 17a in CDCl$_3$.
Fig. 18. 1H (300 MHz) and 13C (75 MHz) NMR spectra of 17b in CDCl$_3$.
Fig. 19. 1H (300 MHz) and 13C (75 MHz) NMR spectra of 17c in CDCl$_3$.
Fig. 20. 1H (300 MHz) and 13C (75 MHz) NMR spectra of 17d in CDCl$_3$.
Fig. 21. 1H (300 MHz) and 13C (75 MHz) NMR spectra of 17e in CDCl$_3$.
Fig. 22. 1H (300 MHz) and 13C (75 MHz) NMR spectra of 19a in CDCl$_3$.
Fig. 23. 1H (300 MHz) and 13C (75 MHz) NMR spectra of 19b in DMSO-d_6.
Fig. 24. 1H (300 MHz) and 13C (75 MHz) NMR spectra of 19c in CDCl$_3$.
Fig. 25. 1H and 13C NMR spectra (300, 75 MHz) of 19d in DMSO-d_6.
8 References

14. K. Marat, University of Manitoba, *SpinWorks 3.1.8, Copyright@2011.*