Supporting information

Cyclization of o-Phenylenediamines by CO\textsubscript{2} in the presence of H\textsubscript{2} to the Synthesis of Benzimidazoles

Bo Yu, Hongye Zhang, Yanfei Zhao, Sha Chen, Jilei Xu, Changliang Huang, Zhimin Liu*

Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
Fax: +861062562852;
E-mail: liuzm@iccas.ac.cn

This file includes:
1. Procedure for the synthesis of byproduct from o-phenylenediamine and CO\textsubscript{2}
2. 1H and 13C NMR data of the as-prepared products
3. Copies of the 1H and 13C NMR spectra (Figures 1-26)
4. References
1. Procedure for the synthesis of byproduct from o-phenylenediamine and CO$_2$:

![Chemical Reaction Diagram]

o-Phenylenediamines (5.0 mmol) was loaded into a Teflon-lined stainless steel reactor of 22 mL coupled with a magnetic stirrer. The reactor was sealed and maintained at 120 °C in an oil bath, which was controlled by a Haake-D3 temperature controller. Then CO$_2$ was charged into the reactor up to 15 MPa, and the stirrer started. After 40 h, the reactor was cooled in ice water and the gas inside was slowly released. The separation process of the reaction mixture was similar to that mentioned above. The results showed that 2-benzimidazolone was the sole product. The isolated product was identified by 1H and 13C NMR.

2. 1H and 13C NMR data of the as-synthesized products:

2a: Benzimidazole

The above compound was prepared according to the general procedure and was subjected to column chromatography on silica gel with ethyl acetate/dichloromethane as the eluent to afford the product in 92% yield (0.546 g, 4.64 mmol). The characterization data obtained for benzimidazole were identical to those previously reported in the literature [1]. 1H NMR (400 MHz, DMSO, 293 k): δ 12.44 (s, 1H), 8.21 (s, 1H), 7.58 (dd, J = 5.9, J = 3.2 Hz, 2H), 7.29 – 7.07 (m, 2H); 13C NMR (100 MHz, DMSO, 293 k): δ 141.9 (CH), 138.0 (C), 121.7 (CH), 115.3 (CH).

2b: 5-methylbenzimidazole

The above compound was prepared according to the general procedure and was subjected to column chromatography on silica gel with ethyl acetate/dichloromethane as the eluent to afford the product in 95% yield (0.627 g, 4.75 mmol). The characterization data obtained for 5-methylbenzimidazole were identical to those previously reported in the literature [1]. 1H NMR (400 MHz, DMSO) δ 12.30 (s, 1H), 8.12 (s, 1H), 7.46 (d, J = 8.2 Hz, 1H), 7.36 (s, 1H), 7.00 (d, J = 8.2 Hz, 1H), 2.41 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 139.4 (CH), 136.4 (C), 135.4 (C), 131.8 (C), 123.4 (CH), 114.5 (CH), 113.8 (CH), 20.7 (CH$_3$).

2c: 5, 6-Dimethylbenzimidazole

The above compound was prepared according to the general procedure and was subjected to column chromatography on silica gel with ethyl acetate/dichloromethane as the eluent to afford the product in 93% yield (0.679 g, 4.65 mmol). The characterization data obtained for 5, 6-dimethylbenzimidazole were identical to those previously reported in the literature [2]. 1H NMR (400 MHz, DMSO) δ 12.23 (s, 1H), 8.07 (s, 1H), 7.36 (s, 2H), 2.30 (s, 6H); 13C NMR (100 MHz, DMSO) δ 140.51 (C), 136.20 (CH), 129.61 (CH), 114.81 (CH), 19.44 (CH$_3$).

2d: 5-chlorobenzimidazole

The above compound was prepared according to the general procedure and was subjected to column chromatography on silica gel with ethyl acetate/dichloromethane as the eluent to afford the product in 93% yield (0.679 g, 4.65 mmol). The characterization data obtained for 5-chlorobenzimidazole were identical to those previously reported in the literature [2]. 1H NMR (400 MHz, DMSO) δ 12.23 (s, 1H), 8.07 (s, 1H), 7.36 (s, 2H), 2.30 (s, 6H); 13C NMR (100 MHz, DMSO) δ 140.51 (C), 136.20 (CH), 129.61 (CH), 114.81 (CH), 19.44 (CH$_3$).
The above compound was prepared according to the general procedure and was subjected to column chromatography on silica gel with ethyl acetate/dichloromethane as the eluent to afford the product in 91% yield (0.691 g, 4.55 mmol). The characterization data obtained for 5-chlorobenzimidazole were identical to those previously reported in the literature [2]. \(^1\)H NMR (400 MHz, DMSO) \(\delta\) 12.61 (s, 1H), 8.27 (s, 1H), 7.65 (s, 1H), 7.60 (d, \(J = 8.5\) Hz, 1H), 7.21 (dd, \(J = 8.5, J = 1.8\) Hz, 1H). \(^{13}\)C NMR (100 MHz, DMSO) \(\delta\) 143.4 (CH), 139.3 (C), 136.6 (C), 126.2 (C), 122.0 (CH), 116.4 (CH), 115.2 (CH).

2e: 5-Bromobenzimidazole

The above compound was prepared according to the general procedure and was subjected to column chromatography on silica gel with ethyl acetate/dichloromethane as the eluent to afford the product in 90% yield (0.886 g, 4.50 mmol). The characterization data obtained for 5-bromobenzimidazole were identical to those previously reported in the literature [3]. \(^1\)H NMR (400 MHz, DMSO) \(\delta\) 12.70 (s, 1H), 8.31 (s, 1H), 7.83 (s, 1H), 7.57 (d, \(J = 8.4\) Hz, 1H), 7.32 (d, \(J = 8.3\) Hz, 1H). \(^{13}\)C NMR (100 MHz, DMSO) \(\delta\) 142.80 (C), 124.17 (CH), 113.62 (CH).

2f: 5-Fluorobenzimidazole

The above compound was prepared according to the general procedure and was subjected to column chromatography on silica gel with ethyl acetate/dichloromethane as the eluent to afford the product in 91% yield (0.619 g, 4.55 mmol). The characterization data obtained for 5-fluorobenzimidazole were identical to those previously reported in the literature [4]. \(^1\)H NMR (400 MHz, DMSO) \(\delta\) 12.81 (s, 1H), 8.38 (s, 1H), 7.63 (dd, \(J = 8.5, 4.9\) Hz, 1H), 7.47 (d, \(J = 7.8\) Hz, 1H), 7.04 (td, \(J = 9.7, 1.9\) Hz, 1H). \(^{13}\)C NMR (100 MHz, DMSO) \(\delta\) 158.29 (C), 143.01 (C), 140.79 (CH), 134.60 (CH), 115.70 (CH), 109.62 (CH), 100.93 (CH).

2g: Ethyl benzimidazole-5-carboxylate

The above compound was prepared according to the general procedure and was subjected to column chromatography on silica gel with ethyl acetate/dichloromethane as the eluent to afford the product in 93% yield (0.883 g, 4.65 mmol). Melting point : 135-136 °C. \(^1\)H NMR (400 MHz, DMSO) \(\delta\) 11.73 (s, 1H), 8.43 (s, 1H), 8.24 (s, 1H), 7.84 (dd, \(J = 8.5, J = 1.3\) Hz, 1H), 7.68 (d, \(J = 8.5\) Hz, 1H), 4.31 (q, \(J = 7.1\) Hz, 2H), 1.32 (t, \(J = 7.1\) Hz, 3H). \(^{13}\)C NMR (100 MHz, DMSO) \(\delta\) 166.5 (C), 144.8 (C), 141.2 (CH), 138.4 (C), 123.8 (CH), 123.2 (CH), 117.8 (CH), 115.1 (CH), 60.7 (CH), 14.5 (CH). FTIR (KBr): 3089, 2983, 2801, 1710, 1624, 1582, 1520, 1475, 1414, 1367, 1305, 1232, 1123, 956, 892, 887, 776, 753 cm\(^{-1}\). HRMS (EI): calcd. for C\(_{10}\)H\(_9\)N\(_2\)O\(_2\)\(^+\) [M\(^+\)] 190.0742, found 190.0740.

2h: 5-Benzoylembenzimidazole

The above compound was prepared according to the general procedure and was subjected to column chromatography on silica gel with ethyl acetate/dichloromethane as the eluent to afford the product in 92% yield (1.021 g, 4.60 mmol). The characterization data obtained for 5-benzoylembenzimidazole were identical to those previously reported in the literature [1]. \(^1\)H NMR (400 MHz, DMSO) \(\delta\) 12.91 (s, 1H), 8.49 (s, 1H), 8.04 (s, 1H), 7.83 – 7.65 (m, 4H), 7.59 (t, \(J = 7.2\) Hz, 1H), 7.50 (t, \(J = 7.5\) Hz, 2H). \(^{13}\)C NMR (100 MHz, DMSO) \(\delta\) 195.34 (CO), 155.18 (C), 144.37 (C), 137.73 (C), 133.67 (C), 131.51 (C), 130.49 (CH), 129.02 (CH), 127.88 (CH), 123.41 (CH), 109.43 (CH), 107.55 (CH).

2i: 5-Nitrobenzimidazole
The above compound was prepared according to the general procedure and was subjected to column chromatography on silica gel with ethyl acetate/dichloromethane as the eluent to afford the product in 87% yield (0.709 g, 4.35 mmol). The characterization data obtained for 5-nitrobenzimidazole were identical to those previously reported in the literature \[2\]. 1H NMR (400 MHz, DMSO) δ 8.38 (s, 1H), 8.51 (d, $J = 2.1$ Hz, 1H), 8.11 (dd, $J = 8.9, 2.2$ Hz, 1H), 7.76 (d, $J = 8.9$ Hz, 1H). 13C NMR (100 MHz, DMSO) δ 146.26 (C), 142.15 (C), 117.10 (CH).

$2j$: 5-Trifluoromethylbenzimidazole

The above compound was prepared according to the general procedure and was subjected to column chromatography on silica gel with ethyl acetate/dichloromethane as the eluent to afford the product in 73% yield (0.679 g, 3.65 mmol). The characterization data obtained for 5-trifluoromethylbenzimidazole were identical to those previously reported in the literature \[5\]. 1H NMR (400 MHz, DMSO) δ 12.89 (s, 1H), 8.45 (s, 1H), 7.97 (s, 1H), 7.78 (d, $J = 8.4$ Hz, 1H), 7.49 (dd, $J = 8.5, 1.1$ Hz, 1H). 13C NMR (100 MHz, DMSO) δ 144.27 (C), 128.67 (C$_F^3$), 125.97 (C$_F^3$), 123.27 (C$_F^3$), 122.27 (C$_H$), 121.95 (CH), 120.57 (C$_F^3$), 118.03 (CH).

$2k$: N-Phenylbenzimidazole

The above compound was prepared according to the general procedure and was subjected to column chromatography on silica gel with ethyl acetate/dichloromethane as the eluent to afford the product in 92% yield (0.892 g, 4.60 mmol). The characterization data obtained for N-phenylbenzimidazole were identical to those previously reported in the literature \[6\]. 1H NMR (400 MHz, CDCl$_3$) δ 8.18 (s, 1H), 7.94 – 7.86 (m, 1H), 7.62 – 7.44 (m, 6H), 7.35 (d, $J = 9.1$, $J = 5.4$ Hz, 2H). 13C NMR (100 MHz, CDCl$_3$) δ 142.7 (C), 135.3 (CH), 132.7 (C), 129.1 (CH), 127.1 (CH), 123.1 (CH), 122.8 (CH), 121.9 (CH), 119.5 (CH), 109.5 (CH).

$2l$: 2-Methyl-1H-benzimidazole

The above compound was prepared according to the general procedure and was subjected to column chromatography on silica gel with ethyl acetate/dichloromethane as the eluent to afford the product in 98% yield (0.646 g, 4.90 mmol). The characterization data obtained for 2-Methyl-1H-benzimidazole were identical to those previously reported in the literature \[7\]. 1H NMR (400 MHz, CDCl$_3$) δ 7.55 (dd, $J = 6.0$, $J = 3.2$ Hz, 2H), 7.22 (dd, $J = 6.0$, $J = 3.2$ Hz, 2H), 2.65 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 151.7 (C), 139.1 (C), 122.6 (CH), 114.9 (CH), 15.41 (CH$_3$).

3: 2-Benzimidazolone

The characterization data obtained for 2-benzimidazolone were identical to those previously reported in the literature \[8\]. 1H NMR (400 MHz, DMSO, 293 k): δ 10.49 (s, 2H), 6.81 (s, 4H); 13C NMR (100 MHz, DMSO, 293 k): δ 155.7 (C), 130.1 (C), 120.8 (CH), 108.9 (CH).
3. Copies of the 1H and 13C NMR spectra (Figures S1-S26)

Figure S1. 1H NMR Spectra of 1H-Benzimidazole (2a)

Figure S2. 13C NMR Spectra of 1H-Benzimidazole (2a)
Figure S3. 1H NMR Spectra of 2-Benzimidazolinone (3)

Figure S4. 13C NMR Spectra of 2-Benzimidazolinone (3)
Figure S5. 1H NMR Spectra of 5-methyl-benzimidazole (2b)

Figure S6. 13C NMR Spectra of 5-methyl-benzimidazole (2b)
Figure S17. 1H NMR Spectra of 5,6-dimethylbenzimidazole (2c)

Figure S18. 13C NMR Spectra of 5,6-dimethylbenzimidazole (2c)
Figure S7. 1H NMR Spectra of 5-chlorobenzimidazole (2d)

Figure S8. 13C NMR Spectra of 5-chlorobenzimidazole (2d)
Figure S13. 1H NMR Spectra of 5-bromobenzimidazole (2e)

Figure S14. 13C NMR Spectra of 5-bromobenzimidazole (2e)
Figure S15. 1H NMR Spectra of 5-fluorobenzimidazole (2f)

Figure S16. 13C NMR Spectra of 5-fluorobenzimidazole (2f)
Figure S9. 1H NMR Spectra of Ethyl benzimidazole-5-carboxylate (2g)

Figure S10. 13C NMR Spectra of Ethyl benzimidazole-5-carboxylate (2g)
Figure S19. 1H NMR Spectra of 5-benzoylbenzimidazole (2h)

Figure S20. 13C NMR Spectra of 5-benzoylbenzimidazole (2h)
Figure S23. 1H NMR Spectra of 5-nitrobenzimidazole (2i)

Figure S24. 13C NMR Spectra of 5-nitrobenzimidazole (2i)
Figure S21. 1H NMR Spectra of 5-trifluoromethylbenzimidazole (2j)

Figure S22. 13C NMR Spectra of 5-trifluoromethylbenzimidazole (2j)
Figure S11. 1H NMR Spectra of N-phenyl-1H-benzimidazole (2k)

Figure S12. 13C NMR Spectra of N-phenyl-1H-benzimidazole (2k)
Figure S25. 1H NMR Spectra of 2-Methyl-1H-benzimidazole (2l)

Figure S26. 13C NMR Spectra of 2-Methyl-1H-benzimidazole (2l)
4. References:

