Electronic Supplementary Information

Solvent-free Huisgen Cyclization Using Heterogeneous Copper Catalysts Supported on Chelate Resin

Yasunari Monguchi,*a Kei Nozaki,a Toshihide Maejima,a Yutaka Shimoda,a Yoshinari Sawama,a Yoshiaki Kitamura,b Yukio Kitadeb,c and Hironao Sajikia

b Laboratory of Molecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
c United Graduate School of Drug Discovery and Medicinal Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
General

All reagents and solvents were obtained from commercial sources and used without further purification. The DIAION CR11 was obtained from Mitsubishi Chemical Corporation (Japan). Flash column chromatography was performed using silica gel 60N [spherical neutral (63–210 µm)] from Kanto Chemical Co., Inc. The 1H and 13C NMR spectra were recorded by a JEOL JEOL JNM AL-400 (400 MHz for 1H NMR and 100 MHz for 13C NMR). Chemical shifts (δ) are expressed in parts per million and internally referenced [0.00 ppm for tetramethylsilane (TMS)/CDCl$_3$ for 1H NMR and 77.0 ppm for CDCl$_3$ for 13C NMR]. The mass spectra were taken by JEOL JMS Q1000GC Mk II Quad GC/MS for EI and JEOL JMS-T100TD for ESI.

STEM image and EPMA data for 12% Cu/CR11

Copper particles in the 12% Cu/CR11 were found to be approximately 3 nm in diameter by scanning transmission electron microscopy (STEM) and uniformly distributed on the support based on an electron probe microanalysis (EPMA). These results indicated that fine copper nanoparticles are highly dispersed on the DIAION CR11 and suggest the potential catalyst activity of the 12% Cu/CR11 toward the copper-catalyzed reactions including the Huisgen cycloaddition.

![STEM image of 12% Cu/CR11.](image1)

![EPMA of 12% Cu/CR11.](image2)
STEM image and EPMA data for 7% Cu/CR20

The STEM and EPMA of 7% Cu/CR20 indicated that 3–5 nm copper particles were disproportionately distributed on the relatively surface areas of the DIAION CR20.

XPS spectra of 12% Cu/CR11 and 7% Cu/CR20

X-ray photoelectron spectroscopy (XPS) analysis of the Cu 2p$_{3/2}$ for 12% Cu/CR11 and 7% Cu/CR20 shows a single peak at approximately 932.5 eV, which is corresponding to Cu(I) (932.5 eV for Cu$_2$O) or Cu(0) (932.7 eV). The shoulder peaks at 935 eV of both catalysts are supposed to be those for Cu(II) [935.1 eV for Cu(OH)$_2$; 935.5 eV for Cu(NO$_3$)$_2$]. These results suggest that the copper species would exist mainly as Cu(I) or Cu(0). Copper ion of Cu(NO$_3$)$_2$ might be reduced to Cu(I) or Cu(0) by the iminodiacetate (CR11) or polyamine (CR20) moiety on the supports during the preparation. Although peaks of Cu(I) and Cu(0) on the XPS chart could not be completely-distinguished, the reaction efficiency and high regioselectivity for the 2,4-disubstituted triazole synthesis strongly suggest the formation of Cu(I) species.
Reuse test of 12% Cu/CR11

A mixture of the benzylazide (666 mg, 5.00 mmol), ethynylbenzene (605 μL, 5.50 mmol), Et$_3$N (154 μL, 1.00 μmol), and 12% Cu/CR11 (26.0 mg, 50.0 μmol) in a 50 mL-round bottom flask was stirred at 70 °C for 4 h. CH$_2$Cl$_2$ (50 mL) was added, and the mixture was passed through a filter paper [Kiriyama, No. 5C (1 μm)]. To the filtrate was added H$_2$O (50 mL), and the layers were separated. The aqueous layer was extracted with CH$_2$Cl$_2$ (50 mL × 2), and the combined organic layers were washed with brine (50 mL × 2), dried over MgSO$_4$, filtered, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (hexane/EtOAc, 10 : 1) to give 1-benzyl-4-phenyl-1,2,3-triazole (1.14 g, 97%). The recovered Cu/CR11 (26.0 mg, 100%) was washed with H$_2$O (20 mL) and MeOH (20 mL), dried under vacuum for 2 h, and then used for the 2nd run. The quantities of reagents for the reuse test are indicated in the Table below.

<table>
<thead>
<tr>
<th>Run</th>
<th>Used 12% Cu/CR11</th>
<th>Azide</th>
<th>Alkyne</th>
<th>Yield</th>
<th>Recovered 12% Cu/CR11</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>26.0 mg</td>
<td>666 mg (5.00 mmol)</td>
<td>605 μL (5.50 mol)</td>
<td>1.14 g (97%)</td>
<td>26.0 mg (100%)</td>
</tr>
<tr>
<td>2nd</td>
<td>26.0 mg</td>
<td>666 mg (5.00 mmol)</td>
<td>605 μL (5.50 mol)</td>
<td>1.15 g (98%)</td>
<td>25.0 mg (96%)</td>
</tr>
<tr>
<td>3rd</td>
<td>23.4 mg</td>
<td>599 mg (4.50 mmol)</td>
<td>545 μL (4.95 mmol)</td>
<td>1.04 g (98%)</td>
<td>22.1 mg (94%)</td>
</tr>
<tr>
<td>4th</td>
<td>20.8 mg</td>
<td>533 mg (4.00 mmol)</td>
<td>439 μL (4.40 mmol)</td>
<td>933 mg (99%)</td>
<td>19.5 mg (94%)</td>
</tr>
<tr>
<td>5th</td>
<td>18.2 mg</td>
<td>466 mg (3.50 mmol)</td>
<td>423 μL (3.85 mmol)</td>
<td>611 mg (74%)</td>
<td>16.1 mg (88%)</td>
</tr>
</tbody>
</table>

Reuse test of 7% Cu/CR20

A mixture of the benzylazide (666 mg, 5.00 mmol), ethynylbenzene (605 μL, 5.50 mmol), and 7% Cu/CR20 (45.0 mg, 50.0 μmol) in a 50 mL-round bottom flask was stirred at 70 °C for 5 h. CH$_2$Cl$_2$ (50 mL) was added, and the mixture was passed through a filter paper [Kiriyama, No. 5C (1 μm)]. To the filtrate was added H$_2$O (50 mL), and the layers were separated. The aqueous layer was extracted with CH$_2$Cl$_2$ (50 mL × 2), and the combined organic layers were washed with brine (50 mL × 2), dried over MgSO$_4$, filtered, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (hexane/EtOAc, 10 : 1) to give 1-benzyl-4-phenyl-1,2,3-triazole (1.17 g, 100%). The recovered Cu/CR20 (45.0 mg, 100%) was washed with H$_2$O (20 mL) and MeOH (20
mL), dried under vacuum for 2 h, and then used for the 2nd run. The quantities of reagents for the reuse test are indicated in the Table below.

<table>
<thead>
<tr>
<th>Run</th>
<th>Used 7% Cu/CR20</th>
<th>Azide</th>
<th>Alkyne</th>
<th>Yield</th>
<th>Recovered 12% Cu/CR11</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>45.0 mg</td>
<td>666 mg</td>
<td>605 μL</td>
<td>1.17 g (100%)</td>
<td>45.0 mg (100%)</td>
</tr>
<tr>
<td>2nd</td>
<td>40.5 mg</td>
<td>599 mg</td>
<td>545 μL</td>
<td>1.05 g (99%)</td>
<td>40.5 mg (100%)</td>
</tr>
<tr>
<td>3rd</td>
<td>36.0 mg</td>
<td>532 mg</td>
<td>484 μL</td>
<td>941 mg (100%)</td>
<td>34.6 mg (96%)</td>
</tr>
<tr>
<td>4th</td>
<td>31.5 mg</td>
<td>466 mg</td>
<td>424 μL</td>
<td>823 mg (100%)</td>
<td>30.8 mg (98%)</td>
</tr>
<tr>
<td>5th</td>
<td>27.0 mg</td>
<td>400 mg</td>
<td>363 μL</td>
<td>705 mg (100%)</td>
<td>24.8 mg (92%)</td>
</tr>
</tbody>
</table>

Assay of residual copper species in the reaction mixture

The reaction was carried out according to the typical procedure for 12% Cu/CR11-catalyzed, solvent-free Husigen cyclization using benzylazide (6.66 g, 50.0 mmol), ethynylbenzene (6.05 mL, 55.0 mmol), Et₃N (1.54 mL, 11.0 mmol), and 12% Cu/CR11 (260 mg, 500 μmol). After 4 h, the reaction was passed through a filter paper [Kiriyama, No. 5C (1 μm)], and the filter was washed with CH₂Cl₂ (100 mL × 2) and H₂O (40 mL × 2). The combined filtrates were separated into two layers, and the organic layer was concentrated in vacuo to approximately 80 mL. Both layers were transferred to each 100 mL volumetric flask, and CH₂Cl₂ and H₂O were added to each flask up to 100 mL of total volume. The concentration of the residual copper in each layer was assayed using Shimadzu ICPS-8100; aqueous layer: 0.86 mg/L (0.86 ppm); organic layer: 8.6 mg/L (6.6 ppm). The leached Cu species 0.946 mg (3.0% of total used Cu).

Spectral Data of Products

1-Benzyl-4-phenyl-1H-1,2,3-triazole (Table 3, Entry 1; Table 6 Entry 1)¹

¹H NMR δ 7.78 (2H, d, J = 8.3 Hz), 7.41–7.29 (8H, m), 5.57 (2H, s); ¹³C NMR δ 148.2, 134.7, 130.5, 129.1, 128.8, 128.1, 128.0, 125.6, 119.4, 54.1; MS (EI) m/z (%) 235 (M⁺, 11%), 206 (61), 180 (11), 116 (87), 104 (21), 91 (100), 65 (20).

1-(4-Fluorobenzyl)-4-phenyl-1H-1,2,3-triazole (Table 3, Entry 3)²

²
1H NMR δ 7.76 (2H, d, $J = 8.0$ Hz), 7.69 (1H, s), 7.37 (2H, t, $J = 7.0$ Hz), 7.24–7.30 (3H, m), 7.02 (2H, t, $J = 8.5$ Hz); 13C NMR δ 164.0, 161.5, 148.2, 130.55, 130.50, 130.4, 129.8, 128.7, 128.2, 125.6, 119.4, 116.1, 115.9, 53.3; MS (EI) m/z (%) 253 (M$^+$, 11%), 224 (47), 198 (8), 116 (100), 89 (39), 63 (12).

1-(4-Methoxybenzyl)-4-phenyl-$1H$-$1,2,3$-triazole (Table 3, Entry 4; Table 6, Entry 2)3

1H NMR δ 7.79 (2H, m), 7.61 (1H, s), 7.39 (2H, m), 7.25–7.32 (3H, m), 6.91 (2H, m), 5.50 (2H, s), 3.81 (3H, s); 13C NMR δ 160.0, 148.1, 130.6, 129.7, 128.8, 128.1, 126.7, 125.7, 119.2, 114.5, 55.3, 53.8; MS (EI) m/z (%) 265 (M$^+$, 11%), 236 (17), 134 (11), 121 (100), 103 (10), 89 (11), 77 (24).

1,4-Diphenyl-$1H$-$1,2,3$-triazole (Table 3, Entry 5)1

1H NMR δ 8.20 (1H, s), 7.91 (2H, d, $J = 7.4$ Hz), 7.78 (2H, d, $J = 8.0$ Hz), 7.53 (2H, t, $J = 7.5$ Hz), 7.45–7.48 (3H, m), 7.38 (1H, m); 13C NMR δ 148.4, 140.0, 131.3, 130.6, 129.0, 128.6, 125.9, 119.8, 117.3, 61.4, 14.3; MS (EI) m/z (%) 221 (M$^+$, 1%), 193 (100), 165 (46), 116 (24), 90 (29), 77 (42), 51 (22).

Ethyl 4-(4-phenyl-$1H$-$1,2,3$-triazol-1-yl)benzate (Table 3, Entry 6; Table 6, Entry 3)

1H NMR δ 8.27–8.22 (3H, m), 7.94–7.90 (4H, m), 7.50–7.39 (3H, m), 4.46 (2H, q, $J = 6.4$ Hz), 1.46 (3H, t, $J = 7.2$ Hz); 13C NMR δ 165.4, 148.7, 140.0, 131.3, 130.6, 129.0, 125.9, 119.8, 117.3, 61.4, 14.3; MS (EI) m/z (%) 293 (M$^+$, 2%), 265 (100), 237 (89), 220 (22), 207 (23), 192 (65), 165 (37), 116 (52), 89 (46), 76 (26), 65 (11); HRMS (ESI) calcd for C$_{17}$H$_{15}$N$_3$O$_2$ [(M+Na)$^+$] 316.10620. Found 316.10547.

1-(4-Benzoylphenyl)-4-phenyl-$1H$-$1,2,3$-triazole (Table 3, Entry 7)

1H NMR δ 8.29 (1H, s), 8.02–7.82 (5H, m), 7.62 (1H, tt, $J = 7.6$, 1.2 Hz), 7.53–7.47 (3H, m), 7.41–7.38 (1H, m); 13C NMR δ 148.9, 139.6, 137.5, 137.1, 132.9, 131.8, 131.1, 123.0, 129.9, 129.0, 128.7, 128.5, 124.7, 119.8, 117.3; MS (EI) m/z 325 (M$^+$, 0.03%), 279 (2), 167 (28), 149 (100), 104 (11), 83 (12), 70 (38), 57 (39); HRMS (ESI) calcd for C$_{21}$H$_{13}$N$_3$O [(M+H)$^+$] 326.12934. Found 326.12914.

1-(4-Methoxyphenyl)-4-phenyl-$1H$-$1,2,3$-triazole (Table 3, Entry 8; Table 6, Entry 4)1

1H NMR δ 8.11 (1H, s), 8.02–7.82 (5H, m), 7.62 (1H, tt, $J = 7.6$, 1.2 Hz), 7.53–7.47 (3H, m), 7.41–7.38 (1H, m); 13C NMR δ 148.9, 139.6, 137.5, 137.1, 132.9, 131.8, 131.1, 123.0, 129.9, 129.0, 128.7, 128.5, 124.7, 119.8, 117.3; MS (EI) m/z 325 (M$^+$, 0.03%), 279 (2), 167 (28), 149 (100), 104 (11), 83 (12), 70 (38), 57 (39); HRMS (ESI) calcd for C$_{21}$H$_{13}$N$_3$O [(M+H)$^+$] 326.12934. Found 326.12914.
1-Cyclohexyl-4-phenyl-1H-1,2,3-triazole (Table 3, Entry 9; Table 6, Entry 5)\(^4\)

\(^1\)H NMR \(\delta\) 7.84 (2H, m), 7.78 (1H, s), 7.41 (2H, m), 7.31 (1H, m), 4.48–4.41 (1H, m), 2.22 (2H, m), 1.94 (2H, m), 1.81–1.72 (3H, m), 1.46 (2H, m), 1.31 (1H, m); \(^{13}\)C NMR \(\delta\) 147.1, 130.8, 128.6, 127.8, 125.5, 117.3, 60.0, 33.4, 25.0, 25.0; MS (EI) m/z (%) 227 (M\(^+\), 22%), 198 (24), 156 (34), 117 (100), 104 (25), 90 (28), 55 (61).

1-Hexyl-4-phenyl-1H-1,2,3-triazole (Table 3, Entry 10; Table 6, Entry 6)\(^5\)

\(^1\)H NMR \(\delta\) 7.88 (2H, m), 7.73 (1H, s), 7.41–7.30 (3H, m), 4.35 (2H, q, \(J = 3.6\) Hz), 1.95–1.88 (2H, m), 1.3 (2H, m), 0.87 (3H, m); \(^{13}\)C NMR \(\delta\) 147.5, 130.7, 128.7, 127.9, 125.5, 119.4, 50.3, 31.0, 26.0, 22.3, 13.8; MS (EI) m/z (%) 229 (M\(^+\), 19%), 200 (23), 172 (17), 144 (18), 130 (16), 117 (100), 104 (27), 89 (23), 17 (14), 55 (11).

1-Benzyl-4-(4-toly)-1H-1,2,3-triazole (Table 4, Entry 1; Table 6, Entry 7)\(^6\)

\(^1\)H NMR \(\delta\) 7.68–7.61 (3H, m), 7.38–7.18 (7H, m), 5.52 (2H, s), 2.34 (3H, s); \(^{13}\)C NMR \(\delta\) 148.1, 137.9, 134.7, 129.3, 129.0, 128.5, 127.9, 125.5, 119.1, 54.0, 21.1; MS (EI) m/z (%) 249 (M\(^+\), 14%), 220 (67), 206 (17), 199 (18), 130 (100), 103 (20), 91 (79), 77 (18), 65 (19).

1-Benzyl-4-(4-methoxyphenyl)-1H-1,2,3-triazole (Table 4, Entry 2; Table 6, Entry 8)\(^6\)

\(^1\)H NMR \(\delta\) 7.72 (2H, d, \(J = 8.4\) Hz), 7.58 (1H, s), 7.36–7.27 (5H, m), 6.92 (2H, m), 3.80 (3H, s); \(^{13}\)C NMR \(\delta\) 159.5, 148.0, 134.7, 129.0, 128.6, 128.0, 126.9, 123.2, 118.7, 114.1, 55.2, 54.1; MS (EI) m/z (%) 265 (M\(^+\), 18%), 236 (16), 146 (44), 104 (25), 91 (100), 65 (21).

1-Benzyl-4-propyl-1H-1,2,3-triazole (Table 4, Entry 3)\(^5\)

\(^1\)H NMR \(\delta\) 7.36–7.21 (6H, m), 5.47 (2H, s), 2.67 (2H, t, \(J = 7.2\) Hz), 1.70–1.63 (2H, m), 0.95 (3H, t, \(J = 7.2\) Hz); \(^{13}\)C NMR \(\delta\) 148.6, 134.9, 128.9, 128.4, 127.8, 120.5, 53.8, 27.6, 22.5, 13.6; MS (EI) m/z (%) 201 (M\(^+\), 2%), 173 (5), 144 (10), 130 (11), 104 (11), 91 (100), 65 (28).

1-Benzyl-4-butyl-1H-1,2,3-triazole (Table 4, Entry 4; Table 6, Entry 9)\(^6\)

\(^1\)H NMR \(\delta\) 7.35–7.21 (6H, m), 5.47 (2H, s), 2.70 (2H, t, \(J = 7.6\) Hz), 1.66–1.58 (2H, m), 1.40–1.31 (2H, m), 0.92 (3H, t, \(J = 7.2\) Hz); \(^{13}\)C NMR \(\delta\) 148.8, 134.9, 128.9, 128.4, 128.0, 127.8, 120.4, 53.8, 31.3, 25.2, 22.2, 13.6; MS (EI) m/z (%) 229 (M\(^+\), 18%), 173 (13), 144 (7), 91 (100), 65 (18).

1-Benzyl-4-pentyl-1H-1,2,3-triazole (Table 4, Entry 5)\(^7\)

\(^1\)H NMR \(\delta\) 7.37–7.21 (6H, m), 5.48 (2H, s), 2.69 (2H, t, \(J = 7.6\) Hz), 1.66–1.60 (2H, m), 1.34–1.29 (4H, m), 0.89 (3H, t, \(J = 6.8\) Hz); \(^{13}\)C NMR \(\delta\) 148.9, 134.9, 128.9, 128.4, 127.8, 120.4, 53.8, 31.3,
28.9, 25.5, 22.2, 13.8; MS (EI) m/z (%) 243 (M+, 3%), 186 (5), 173 (14), 144 (7), 124 (4), 104 (5), 91 (100), 65 (18).

1-Benzyl-4-n-hexyl-1H-1,2,3-triazole (Table 4, Entry 6; Table 6, Entry 10)7

1H NMR δ 7.35–7.22 (6H, m), 5.47 (2H, s), 2.70 (2H, t, J = 7.6 Hz), 1.67–1.60 (2H, m), 1.35–1.27 (6H, m), 0.88 (3H, t, J = 7.2 Hz); 13C NMR δ 148.8, 134.9, 128.8, 128.3, 127.7, 120.5, 53.7, 31.3, 29.17, 28.7, 25.5, 22.3, 13.8; MS (EI) m/z (%) 215 (M+, 1%), 186 (4), 173 (14), 144 (9), 104 (8), 91 (100), 77 (3), 65 (21).

Ethyl 1-benzyl-1H-1,2,3-triazole-4-carboxylate (Table 4, Entry 9)1

1H NMR δ 8.02 (1H, s), 7.39–7.28 (5H, m), 5.58 (2H, s), 4.41 (2H, q, J = 6.8 Hz), 1.39 (3H, t, J = 6.8 Hz); 13C NMR δ 160.5, 140.4, 133.7, 129.1, 128.9, 128.1, 127.2, 61.1, 54.2, 14.1; MS (EI) m/z (%) 231 (M+, 0.1%), 174 (25), 130 (20), 91 (100), 77 (4), 65 (17).

References
NMR spectra of new compounds

Table 3, Entry 6
Table 3, Entry 7

![Chemical Structure Image]

X: parts per million (ppm)

![Graph Image]

Y: parts per million (ppm)