Water Enhanced Synthesis of gem-Bisphosphonates via Rh(I) Mediated 1,4-Conjugate Addition of Aryl Boronic Acids to Vinilydenbisphosphonate Esters

Giulio Bianchini, a Alessandro Scarso, a,* Andrea Chiminazzo, a Laura Sperni, a Giorgio Strukul, a,*

a Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari di Venezia, Dorsoduro 2137, I-30123 Venezia, Italy; Tel: +39-041-2348569, Fax: +39-041-2438517, alesca@unive.it

Reagents and Materials

General. 1H NMR, 31P{1H} NMR, spectra were run on a Bruker Avance 300 spectrometer operating at 300.15, 121.5, MHz, respectively, at 298 K, unless otherwise stated. δ values in ppm are relative to Si(CH$_3$)$_4$, 85% H$_3$PO$_4$. GC-MS analyses were performed on a GC Trace GC 2000 coupled with a quadrupole MS Thermo Finnigan Trace MS with Full Scan method. Experimental conditions are reported in the following table.

<table>
<thead>
<tr>
<th>Experimental conditions for GC-MS analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capillary column:</td>
</tr>
<tr>
<td>Initial T, °C:</td>
</tr>
<tr>
<td>Rate, °C/min:</td>
</tr>
<tr>
<td>Final T, °C:</td>
</tr>
<tr>
<td>Injector T (split), °C:</td>
</tr>
<tr>
<td>GAAs carrier flow, mL/min.</td>
</tr>
<tr>
<td>** Injected volume, μL**</td>
</tr>
<tr>
<td>Solvent delay, min.</td>
</tr>
<tr>
<td>Mass range, amu:</td>
</tr>
<tr>
<td>Detector voltage, V:</td>
</tr>
<tr>
<td>Interface T, °C</td>
</tr>
<tr>
<td>Source T, °C</td>
</tr>
</tbody>
</table>
Vinilydenbisphosphonate tetraethyl ester (VBP) was prepared as reported in the literature.1 All the synthetic work was carried out with the exclusion of atmospheric oxygen under nitrogen atmosphere using standard Schlenk techniques. Solvents were dried and purified according to standard methods.

Catalytic Studies: general procedure for the catalytic addition of boronic acid to VBP

In a Schlenk reactor 0.2 mmol (50 μL) of VBP and 0.6 mmol of the proper boronic acid were added. To this, 1.50 mL of degassed water and 150 μL of a solution containing 24 mg of [RhCl(COD)]\textsubscript{2} in 1.5 mL of 1,4-dioxane were added. The resulting solution was tightly closed and thermostatted at 110°C for 6-18 h under vigorous stirring. The solution was cooled to room temperature, diluted with 5 mL of water and extracted with ethyl acetate (2 X 5 mL) leading to the isolation of the crude product. This was further purified with column chromatography (hexane:acetone 1:1) and characterized with 1H, 31P and GC-MS analysis.

General procedure for the ester deprotection of the BP

The tetraethyl ester of the bisphosphonic acid (0.2 mmol) was introduced in a vial under anhydrous condition. To this 12 equivalents of bromotrimethylsilane (2.4 mmol) were added. The vial was then sealed and stirred under inert atmosphere at rt for 18 h. The crude mixture was concentrated under reduced pressure, diluted with bidistilled water, stirred for 4 h at room temperature and dried. The free bisphosphonic acid was obtained in quantitative yield and was characterized by 1H and 31P NMR.

| Table 1. New BP tetraethylester derivatives prepared by Rh(I) aryl boronic addition to VBP. |
|---|---|---|
| 1BA | 1H-NMR (300.15 MHz, CDCl\textsubscript{3}): δ 1.21-1.31 (m, 12H), 2.65 (tt, J = 24.0, 6.3 Hz, 1H), 3.24 (td, J = 16.5, 6.3 Hz, 2H), 3.97-4.21 (m, 8H), 7.15-7.28 (m, 5H). $31P$ 1H-NMR (121.5 MHz, CDCl\textsubscript{3}): δ 24.20 (s). |
| 2BA | 1H-NMR (300.15 MHz, CDCl\textsubscript{3}): δ 1.28 (td, J = 7.2, 3.0 Hz, 12H), 2.59 (tt, J = 23.7, 6.0 Hz, 1H), 3.19 (td, J = 16.5, 6.0 Hz, 2H), 3.78 (s, 3H), 4.02 – 4.19 (m, 8H), 6.81 (d, J = 8.7 Hz, 2H), 7.19 (d, J = 8.7 Hz, 2H). $31P$ 1H-NMR (121.5 MHz, CDCl\textsubscript{3}): δ 24.33 (s). |
| 3BA | 1H-NMR (300.15 MHz, CDCl\textsubscript{3}): δ 1.27 (td, J = 6.9, 2.7 Hz, 12H), 2.46 (s, 3H), 2.60 (tt, J = 24.0, 6.3 Hz, 1H), 3.20 (td, J = 16.5, 6.3 Hz, 2H), 4.00 – 4.20 (m, 8H), 7.19 (s, 4H). $31P$ 1H-NMR (121.5 MHz, CDCl\textsubscript{3}): δ 24.14 (s). |
1H-NMR (300.15 MHz, CDCl3): δ 1.27 (td, J = 7.2, 2.4 Hz, 12H), 2.62 (tt, J = 23.7, 6.3 Hz, 1H), 3.33 (td, J = 16.5, 6.3 Hz, 2H), 4.00 – 4.20 (m, 8H), 7.45 (dd, J = 8.7 Hz, 2H), 8.14 (d, J = 8.7 Hz, 2H).

31P {1H}-NMR (121.5 MHz, CDCl3): δ 23.38 (s).

1H-NMR (300.15 MHz, CDCl3): δ 1.27 (td, J = 6.9, 3.0 Hz, 12H), 2.57 (tt, J = 23.7, 6.3 Hz, 1H), 3.19 (td, J = 16.5, 6.3 Hz, 2H), 4.00 – 4.21 (m, 8H), 7.15 (d, J = 8.4 Hz, 2H), 7.39 (d, J = 8.4 Hz, 2H).

31P {1H}-NMR (121.5 MHz, CDCl3): δ 23.89 (s).

1H-NMR (300.15 MHz, CDCl3): δ 1.28 (td, J = 6.9, 4.2 Hz, 12H), 2.59 (tt, J = 23.7, 6.0 Hz, 1H), 2.90 (s, 6H), 3.16 (td, J = 16.7, 6.0 Hz, 2H), 4.00 – 4.30 (m, 8H), 6.67 (d, J = 8.7 Hz, 2H), 7.14 (d, J = 8.7 Hz, 2H).

31P {1H}-NMR (121.5 MHz, CDCl3): δ 24.59 (s).

1H-NMR (300.15 MHz, CDCl3): δ 1.28 (td, J = 6.9, 2.7 Hz, 12H), 2.61 (tt, J = 24.0, 6.6 Hz, 1H), 3.28 (td, J = 16.5, 6.6 Hz, 2H), 4.02 – 4.25 (m, 8H), 7.12 (d, J = 11.4 Hz, 1H), 7.18 (d, J = 7.8 Hz, 1H), 7.78 (t, J = 7.8 Hz, 1H), 10.31 (s, 1H).

31P {1H}-NMR (121.5 MHz, CDCl3): δ 23.34 (s).

1H-NMR (300.15 MHz, CDCl3): δ 1.28 (td, J = 6.9, 3.0 Hz, 12H), 2.59 (tt, J = 24.0, 6.6 Hz, 1H), 3.20 (td, J = 15.0, 6.0 Hz, 2H), 4.00 – 4.22 (m, 8H), 7.26 – 7.30 (bs, 5H).

31P {1H}-NMR (121.5 MHz, CDCl3): δ 24.20 (s).

1H-NMR (300.15 MHz, CDCl3): δ 1.23 (td, J = 6.9, 3.3 Hz, 12H), 2.75 (tt, J = 24.0, 6.3 Hz, 1H), 3.41 (td, J = 16.5, 6.3 Hz, 2H), 4.00-4.22 (m, 8H), 7.36 – 7.48 (m, 3H), 7.69-7.82 (m, 4H).

31P {1H}-NMR (121.5 MHz, CDCl3): δ 24.21 (s).

1H-NMR (300.15 MHz, CDCl3): δ 1.16-1.28 (m, 12H), 2.66 (s, 3H), 2.87 (tt, J = 23.4, 6.6 Hz, 1H), 3.70 (td, J = 15.9, 6.6 Hz, 2H), 3.94 – 4.24 (m, 8H), 7.22 (d, J = 7.2 Hz, 1H), 7.38 (d, J = 7.2 Hz, 1H), 7.50 – 7.55 (m, 2H), 7.97 – 8.05 (m, 1H), 8.10 – 8.17 (m, 1H).

31P {1H}-NMR (121.5 MHz, CDCl3): δ 24.21 (s).

1H-NMR (300.15 MHz, CDCl3): δ 1.14 (dt, J = 20.4, 7.2 Hz, 12H), 1.49 (t, J = 6.9 Hz, 3H), 3.18 (tt, J = 23.4, 7.2 Hz, 1H), 3.64-3.80 (m, 2H), 3.87-4.10 (m, 8H), 4.19 (q, J = 7.2 Hz, 2H), 7.21 (d, J = 9.0 Hz, 1H), 7.34-7.27 (m, 1H), 7.51-7.42 (m, 1H), 7.73 (m, 2H), 8.17 (d, J = 8.4 Hz, 1H).

31P {1H}-NMR (121.5 MHz, CDCl3): δ 24.70 (s).
<table>
<thead>
<tr>
<th>Compound</th>
<th>1H-NMR (300.15 MHz, CDCl₃): δ</th>
<th>31P {¹H}-NMR (121.5 MHz, CDCl₃): δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>11BA</td>
<td>1.23 (td, J = 7.2, 3.3 Hz, 12H), 2.72 (tt, J = 23.7, 6.3 Hz, 1H), 3.37 (td, J = 16.5, 6.3 Hz, 2H), 3.90 (s, 3H), 4.02 – 4.18 (m, 8H), 7.07– 7.15 (m, 2H), 7.33 – 7.38 (m, 1H), 7.63-7.70 (m, 3H).</td>
<td>24.29 (s).</td>
</tr>
<tr>
<td>12BA</td>
<td>1.25 (td, J = 6.9, 3.3 Hz, 12H), 2.77 (tt, J = 24.0, 6.3 Hz, 1H), 3.38 (td, J = 16.5, 6.3 Hz, 2H), 4.00 – 4.24 (m, 8H), 6.97-7.08 (m, 2H), 7.29 (d, J = 9.6 Hz, 1H), 7.48 (d, J = 8.4 Hz, 1H), 7.52 (d, J= 8.7 Hz, 1H), 7.61 (s, 1H).</td>
<td>24.66 (s).</td>
</tr>
<tr>
<td>13BA</td>
<td>1.28 (td, J = 7.2, 2.4 Hz, 12H), 2.57 (tt, J = 23.7, 6.0 Hz, 1H), 3.09-3.25 (m, 4H), 4.00 – 4.22 (m, 8H), 4.54 (t, J = 8.7 Hz, 2H), 6.68 (d, J = 8.1 Hz, 1H), 7.00 (d, J = 8.4 Hz, 1H), 7.12 (s, 1H).</td>
<td>24.42 (s).</td>
</tr>
<tr>
<td>14BA</td>
<td>1.24-1.33 (m, 12H), 2.57 (tt, J = 23.7, 6.0 Hz, 1H), 3.13 (td, J = 16.5, 6.0 Hz, 2H), 4.02 – 4.19 (m, 8H), 4.22 (s, 4H), 6.77 – 6.70 (m, 3H).</td>
<td>24.26 (s).</td>
</tr>
<tr>
<td>15BA</td>
<td>1.24-1.35 (m, 12H), 2.51 (tt, J = 23.7, 6.0 Hz, 1H), 3.07 (td, J = 16.5, 6.0 Hz, 2H), 4.06 – 4.22 (m, 8H), 6.35-6.37 (m, 1H), 7.31-7.35 (m, 2H).</td>
<td>24.16 (s).</td>
</tr>
<tr>
<td>16BA</td>
<td>1.28 (td, J = 7.2, 2.4 Hz, 12H), 2.61 (tt, J = 23.7, 6.0 Hz, 1H), 3.27 (td, J = 16.5, 6.0 Hz, 2H), 4.04-4.20 (m, 8H), 7.01 (dd, J = 4.9, 1.2 Hz, 1H), 7.10 (bs, 1H), 7.23 (dd, J = 4.9, 3.0 Hz, 1H).</td>
<td>24.10 (s).</td>
</tr>
<tr>
<td>17BA</td>
<td>1.20-1.31 (m, 12H), 2.80 (tt, J = 23.7, 6.3 Hz, 1H), 3.51 (td, J = 16.1, 6.4 Hz, 2H), 4.00-4.22 (m, 8H), 7.31 (s, 1H), 7.33-7.42 (m, 2H), 7.81-7.90 (m, 2H).</td>
<td>23.99 (s).</td>
</tr>
<tr>
<td>18BA</td>
<td>1.29 (t, J = 12.3 Hz, 12H), 2.70 (tt, J = 24.0, 5.4 Hz, 1H), 3.18 (td, J = 16.5, 5.4 Hz, 2H), 4.014–24 (m, 8H), 6.60-6.70 (m, 2H), 7.03 (td, J = 7.6, 1.6 Hz, 1H), 7.12 (dd, J = 7.5, 1.5 Hz, 1H).</td>
<td>25.28 (s).</td>
</tr>
</tbody>
</table>
Table 2. New bisphosphonic acids prepared by deprotection of the BP tetraethylester derivatives with trimethylsilylbromide and water.

<table>
<thead>
<tr>
<th>#</th>
<th>Product</th>
<th>NMR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>![Image 1](H-NMR (300.15 MHz, CDCl₃): δ 1.24 (td, J = 7.2, 3.6 Hz, 12H), 2.76 (tt, J = 23.4, 6.9 Hz, 1H), 3.69 (td, J = 15.9, 6.9 Hz, 2H), 4.00–4.22 (m, 8H), 7.40 (d, J = 4.5 Hz, 1H), 7.53 (dd, J = 9.0, 2.1 Hz, 1H), 8.11 (dd, J = 5.6, 3.3 Hz, 2H), 8.81 (d, J = 4.5 Hz, 1H).</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>![Image 2](δ 23.29 (s).</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>![Image 3](δ 24.02 (s).</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>![Image 4](δ 22.61 (s).</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>![Image 5](δ 21.42 (s).</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>![Image 6](δ 2.63 (tt, J = 22.8, 6.6 Hz, 1H), 3.20 (td, J = 16.2, 6.6 Hz, 2H), 7.23–7.32 (m, 1H), 7.32–7.40 (m, 3H).</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>![Image 7](δ 2.40–2.70 (bs, 1H), 3.15 (btd, J = 16.5, 5.7 Hz, 2H), 3.82 (s, 3H), 6.95 (d, J = 8.4 Hz, 2H), 7.31 (d, J = 8.4 Hz, 2H).</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>![Image 8](δ 2.50–2.76 (bt, J = 22.8, 7.2 Hz, 1H), 3.23 (td, J = 15.6, 7.2 Hz, 2H), 7.05–7.30 (m, 2H), 7.85 (t, J = 7.8 Hz, 1H), 10.11 (s, 1H).</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>![Image 9](δ 2.45–2.69 (bt, J = 24.0 Hz, 1H), 3.15 (btd, J = 15.6, 5.4 Hz, 2H), 7.26 (d, J = 8.4 Hz, 2H), 7.50 (d, J = 8.4 Hz, 2H).</td>
<td></td>
</tr>
</tbody>
</table>

Electronic Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2012
\(^1\)H-NMR (300.15 MHz, D\(_2\)O): \(\delta\) 2.67 (s, 3H), 2.77 (tt, \(J = 22.8, 6.6 \text{ Hz, 1H}\)), 2.65 (td, \(J = 16.2, 7.2 \text{ Hz, 2H}\)), 7.34 (d, \(J = 6.9 \text{ Hz, 1H}\)), 7.47 (d, \(J = 6.9 \text{ Hz, 1H}\)), 7.58-7.70 (m, 2H), 8.10-8.23 (m, 2H).

\(^{31}\)P \(^1\)H-NMR (121.5 MHz, D\(_2\)O): \(\delta\) 22.19 (s)

\(^1\)H-NMR (300 MHz, D\(_2\)O): \(\delta\) 1.47 (t, \(J = 6.6 \text{ Hz, 3H}\)), 2.80-3.05 (bt, \(J = 22.2 \text{ Hz, 1H}\)), 3.68 (td, \(J = 14.7, 6.6 \text{ Hz, 2H}\)), 4.30 (q, \(J = 6.9 \text{ Hz, 2H}\)), 7.40-7.47 (m, 2H), 7.56-7.63 (m, 1H), 7.84-7.93 (m, 2H), 8.13-8.20 (m, 1H).

\(^{31}\)P \(^1\)H-NMR (MHz, D\(_2\)O): \(\delta\) 22.55

\(^1\)H-NMR (300 MHz, D\(_2\)O): \(\delta\) 2.35-2.60 (bt, \(J = 23.1 \text{ Hz, 1H}\)), 3.12 (td, \(J = 15.6, 5.4 \text{ Hz, 2H}\)), 3.22 (t, \(J = 8.7 \text{ Hz, 2H}\)), 4.58 (t, \(J = 8.7 \text{ Hz, 2H}\)), 6.77 (d, \(J = 8.1 \text{ Hz, 1H}\)), 7.11 (d, \(J = 8.1 \text{ Hz, 1H}\)), 7.27 (s, 1H).

\(^{31}\)P \(^1\)H-NMR (121.5 MHz, D\(_2\)O): \(\delta\) 22.23 (s)
Figure 1: 1BA 1H-NMR (300.15 MHz) and 31P {1H}-NMR (121.5 MHz) spectra, CDCl$_3$.

Electronic Supplementary Material (ESI) for Green Chemistry
This journal is © The Royal Society of Chemistry 2012
Figure 2: 1BA mass spectrum
Figure 3: Deprotected 1BA 1H-NMR (300.15 MHz) and 31P {1H}-NMR (121.5 MHz) spectra, D$_2$O.
Figure 4: 2BA 1H-NMR (300.15 MHz) and 31P {1H}-NMR (121.5 MHz) spectra, CDCl$_3$.
Figure 5: 2BA mass spectrum.
Figure 6: Deprotected 2BA 1H-NMR (300.15 MHz) and 31P 1H-NMR (121.5 MHz) spectra, D$_2$O.
Figure 7: 3BA 1H-NMR (300.15 MHz) e 31P (1H)-NMR (121.5 MHz) spectra, CDCl$_3$.
Figure 8: 3BA mass spectrum.
Figure 9: 4BA 1H-NMR (300.15 MHz) and 31P (1H)-NMR (121.5 MHz) spectra, CDCl$_3$.

Electronic Supplementary Material (ESI) for Green Chemistry

This journal is © The Royal Society of Chemistry 2012
Figure 10: 4BA mass spectrum.
Figure 11: Deprotected 4BA 1H-NMR (300.15 MHz) and 31P 1H-NMR (121.5 MHz) spectra, D_2O.
Figure 12: 5BA 1H-NMR (300.15 MHz) and 31P 1H-NMR (121.5 MHz) spectra, CDCl$_3$.

Electronic Supplementary Material (ESI) for Green Chemistry
This journal is © The Royal Society of Chemistry 2012
Figure 13: 5BA mass spectrum.
Figure 14: Deprotected 5BA 1H-NMR (300.15 MHz) and 31P {1H}-NMR (121.5 MHz) spectra, D$_2$O.
Figure 15: 6BA 1H-NMR (300.15 MHz) and 31P (1H) NMR (121.5 MHz) spectra, CDCl$_3$.

Electronic Supplementary Material (ESI) for Green Chemistry
This journal is © The Royal Society of Chemistry 2012
Figure 16: 6BA mass spectrum.
Figure 17: 7BA 1H-NMR (300.15 MHz) and 31P 1H-NMR (121.5 MHz) spectra, CDCl$_3$.
Figure 18: 7BA mass spectrum.
Figure 19: Deprotected 1H-NMR (300.15 MHz) and 31P 1H-NMR (121.5 MHz) spectra, D$_2$O.
Figure 20: 1BAbis 1H-NMR (300.15 MHz) and 31P 1H-NMR (121.5 MHz) spectra, CDCl$_3$.
Figure 21: 1Babis mass spectrum.
Figure 22: 8BA 1H-NMR (300.15 MHz) and 31P (1H)-NMR (121.5 MHz) spectra, CDCl$_3$.
Figure 23: 8BA mass spectrum.
Figure 24: 9βA1H-NMR (300.15 MHz) and 31P {1H}1H-NMR (121.5 MHz) spectra, CDCl\textsubscript{3}.
Figure 25: 9BA mass spectrum.
Figure 26: 9BA 1H-NMR (300.15 MHz) and 31P {1H}-NMR (121.5 MHz) spectra, D$_2$O.
Figure 27: ¹H-NMR (300.15 MHz) and ³¹P {¹H}-NMR (121.5 MHz) spectra, CDCl₃.
Figure 28: 10BA spectrum.
Figure 29: Deprotected10BA 1H-NMR (300.15 MHz) and 31P 1H-NMR (121.5 MHz) spectra, D$_2$O.
Figure 30: 11BA 1H-NMR (300.15 MHz) and 31P 1H-NMR (121.5 MHz) spectra, CDCl$_3$.
Figure 31: 11BA mass spectrum.
Figure 32: 12BA 1H-NMR (300.15 MHz) and 31P 1H-NMR (121.5 MHz) spectra, CDCl$_3$.

Electronic Supplementary Material (ESI) for Green Chemistry
This journal is © The Royal Society of Chemistry 2012
Figure 33: 12BA mass spectrum.
Figure 34: 13BA 1H-NMR (300.15 MHz) and 31P (1H)-NMR (121.5 MHz) spectra, CDCl$_3$.
Figure 35: 13BA spectrum.
Figure 36: Deprotected 13BA 1H-NMR (300.15 MHz) and 31P {1H}-NMR (121.5 MHz) spectra, D$_2$O.
Figure 37: 14BA 1H-NMR (300.15 MHz) and 31P (1H)-NMR (121.5 MHz) spectra, CDCl$_3$.
Figure 38: 14BA mass spectrum.
Figure 39: 15BA 1H-NMR (300.15 MHz) and 31P {1H}-NMR (121.5 MHz) spectra, CDCl$_3$.

Electronic Supplementary Material (ESI) for Green Chemistry
This journal is © The Royal Society of Chemistry 2012
Figure 40: 15BA mass spectrum.
Figure 41: 16BA 1H-NMR (300.15 MHz) and 31P 1H-NMR (121.5 MHz) spectra, CDCl$_3$.

Electronic Supplementary Material (ESI) for Green Chemistry
This journal is © The Royal Society of Chemistry 2012
Figure 42: 16BA mass spectrum.
Figure 43: 17BA 1H-NMR (300.15 MHz) and 31P (1H)-NMR (121.5 MHz) spectra, CDCl$_3$.

Electronic Supplementary Material (ESI) for Green Chemistry
This journal is © The Royal Society of Chemistry 2012
Figure 44: 17BA mass spectrum.
Figure 45: 18BA mass spectrum.
Figure 46: 18BA mass spectrum.
Figure 47: 19BA 1H-NMR (300.15 MHz) and 31P (1H)-NMR (121.5 MHz) spectra, CDCl$_3$.

Electronic Supplementary Material (ESI) for Green Chemistry
This journal is © The Royal Society of Chemistry 2012
Figure 48: 19BA mass spectrum.