‘Evaluation of Alternative Solvents in Common Amide Coupling Reactions: Replacement of Dichloromethane and N,N-Dimethylformamide’

Donna S. MacMillan,a Jane Murray,b Helen F. Sneddon,c Craig Jamieson,a and Allan J. B. Watson*a

aDepartment of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow, G1 1XL, UK. Fax: +44 (0)141 548 4822; Tel: +44 (0)141 548 2439; E-mail: allan.watson.100@strath.ac.uk.
bSigma-Aldrich, The Old Brickyard, New Road, Gillingham, Dorset, SP8 4XT, UK.
cGlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK.

Supporting Information

1. General

1.1. Reagents
All reagents and solvents were obtained from commercial suppliers and were used without further purification unless otherwise stated.

1.2 Experimental Details
All reactions were carried out using conventional glassware at room temperature (generally approx. 18 °C) under an air atmosphere and with no special attention given to the exclusion of moisture.

1.3 Purification of Products
i) Thin layer chromatography was carried out using Merck silica plates coated with fluorescent indicator UV254. These were analysed under 254 nm UV light or developed using potassium permanganate or vanillin solution.
ii) Flash chromatography was carried out using ZEOprep 60 HYD 40-63µm silica gel or IST Isolute Flash silica cartridges.

1.4 Analysis of Products
i) Fourier Transformed Infra-Red (FTIR) spectra were obtained on a Shimadzu IRAffinity-1 machine.
ii) 1H and 13C NMR spectra were obtained on a Bruker AV 400 at 400 MHz and 100 MHz respectively, or a Bruker DRX 500 at 500 MHz and 125 MHz, respectively. Chemical shifts are reported in ppm and coupling constants are reported in Hz with CDCl3 referenced at 7.27 (1H) and 77.0 ppm (13C), respectively, and DMSO-d6 referenced at 2.52 (1H) and 39.5 ppm (13C), respectively.
iii) High-resolution mass spectra were obtained through analysis at the EPSRC National Mass Spectrometry Facility, University of Swansea.
iv) HPLC analysis was carried out on an Agilent Technologies 1200 Series Analytical HPLC using a Phenomenex or Macherey-Nagel C18 5 µM 4.6 x 50 mm column using MeCN/H2O as the the mobile phase with the following gradient:
<table>
<thead>
<tr>
<th>Time (min)</th>
<th>% MeCN</th>
<th>% H₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5</td>
<td>95</td>
</tr>
<tr>
<td>1</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>95</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>95</td>
</tr>
</tbody>
</table>

Conversions were obtained using an internal standard which were either dibenzyl ether (A), benzamide (B), bromobenzene (C), or ethyl 2-pyridylacetate (D).

2. Experimental Procedures

2.1 Representative Reactions

2.2 General Experimental Procedure

A solution of acid (1 equiv, 0.2 mmol), standard A, B, C, or D and coupling agent (1.2 equiv, 0.24 mmol) were stirred in solvent (1 mL, 0.2 M) at room temperature. DIPEA (2 equiv, 0.4 mmol) was added and the mixture was stirred for 5 minutes before addition of the amine (1.1 equiv, 0.22 mmol). The reaction was then followed by HPLC at 0 h (approx. 5 min), 1 h, 2 h, 3 h, 4 h, 5 h, 6 h, 8 h, and 24 h by removal of an aliquot (10 µL) which was diluted to 1 mL in MeCN before injection.
3. Experimental Data

3.1 Conversion vs. Time Data for Reactions 1-4 Using Specific Coupling Agents in the Range of Solvents

The internal standard used for each dataset is indicated in superscript at the header of each column.

Reaction 1: HATU

<table>
<thead>
<tr>
<th>Time (h) / Solvent</th>
<th>CHCle</th>
<th>2-MeTHFe</th>
<th>DMFe</th>
<th>DMCe</th>
<th>IPAe</th>
<th>EtOAce</th>
<th>CPMEe</th>
<th>TBMEe</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>87.4</td>
<td>0.6</td>
<td>100.0</td>
<td>6.5</td>
<td>6.9</td>
<td>10.9</td>
<td>6.9</td>
<td>4.2</td>
</tr>
<tr>
<td>1</td>
<td>100.0</td>
<td>30.2</td>
<td>100.0</td>
<td>45.6</td>
<td>50.3</td>
<td>65.7</td>
<td>19.5</td>
<td>65.0</td>
</tr>
<tr>
<td>2</td>
<td>100.0</td>
<td>74.2</td>
<td>100.0</td>
<td>86.2</td>
<td>65.8</td>
<td>73.3</td>
<td>45.0</td>
<td>100.0</td>
</tr>
<tr>
<td>3</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>94.5</td>
<td>65.5</td>
<td>100.0</td>
</tr>
<tr>
<td>4</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>76.1</td>
<td>100.0</td>
</tr>
<tr>
<td>5</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>88.4</td>
<td>100.0</td>
</tr>
<tr>
<td>6</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>96.8</td>
<td>100.0</td>
</tr>
<tr>
<td>8</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>24</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>
Reaction 1: COMU

<table>
<thead>
<tr>
<th>Time (h) / Solvent</th>
<th>CHCl$_2$</th>
<th>2-MeTHF</th>
<th>DMF</th>
<th>DMC</th>
<th>IPA</th>
<th>EtOAc</th>
<th>CPME</th>
<th>TBME</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>25.6</td>
<td>5.1</td>
<td>9.6</td>
<td>35.4</td>
<td>14.3</td>
<td>24.2</td>
<td>3.2</td>
<td>16.5</td>
</tr>
<tr>
<td>1</td>
<td>41.2</td>
<td>44.3</td>
<td>100.0</td>
<td>50.7</td>
<td>66.7</td>
<td>59.5</td>
<td>7.6</td>
<td>57.8</td>
</tr>
<tr>
<td>2</td>
<td>58.2</td>
<td>60.5</td>
<td>100.0</td>
<td>65.7</td>
<td>83.7</td>
<td>84.2</td>
<td>51.2</td>
<td>79.7</td>
</tr>
<tr>
<td>3</td>
<td>77.8</td>
<td>71.5</td>
<td>100.0</td>
<td>88.4</td>
<td>100.0</td>
<td>100.0</td>
<td>56.5</td>
<td>81.1</td>
</tr>
<tr>
<td>4</td>
<td>88.3</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>62.0</td>
<td>83.6</td>
</tr>
<tr>
<td>5</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>62.0</td>
<td>87.2</td>
</tr>
<tr>
<td>6</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>62.0</td>
<td>100.0</td>
</tr>
<tr>
<td>8</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>62.0</td>
<td>100.0</td>
</tr>
<tr>
<td>24</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>62.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>
Reaction 1: DIC/HOBt

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>CHCl₂</th>
<th>2-MeTHF</th>
<th>DMF</th>
<th>DMC</th>
<th>IPA</th>
<th>EtOAc</th>
<th>CPME</th>
<th>TBME</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10.5</td>
<td>10.1</td>
<td>23.1</td>
<td>3.6</td>
<td>6.7</td>
<td>31.0</td>
<td>6.4</td>
<td>10.6</td>
</tr>
<tr>
<td>1</td>
<td>41.9</td>
<td>38.3</td>
<td>100.0</td>
<td>32.8</td>
<td>51.9</td>
<td>85.8</td>
<td>10.9</td>
<td>64.0</td>
</tr>
<tr>
<td>2</td>
<td>53.1</td>
<td>59.4</td>
<td>100.0</td>
<td>56.6</td>
<td>78.1</td>
<td>100.0</td>
<td>15.9</td>
<td>88.5</td>
</tr>
<tr>
<td>3</td>
<td>80.9</td>
<td>86.1</td>
<td>100.0</td>
<td>80.0</td>
<td>88.5</td>
<td>100.0</td>
<td>19.1</td>
<td>100.0</td>
</tr>
<tr>
<td>4</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>22.4</td>
<td>100.0</td>
</tr>
<tr>
<td>5</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>24.8</td>
<td>100.0</td>
</tr>
<tr>
<td>6</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>26.5</td>
<td>100.0</td>
</tr>
<tr>
<td>8</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>31.0</td>
<td>100.0</td>
</tr>
<tr>
<td>24</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>31.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>
Reaction 1: PyBOP

<table>
<thead>
<tr>
<th>Time (h) / Solvent</th>
<th>CHCl₂</th>
<th>2-MeTHF</th>
<th>DMF</th>
<th>DMC</th>
<th>IPA</th>
<th>EtOAc</th>
<th>CPME</th>
<th>TBME</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>14.1</td>
<td>21.0</td>
<td>8.8</td>
<td>41.5</td>
<td>6.6</td>
<td>48.7</td>
<td>7.3</td>
<td>10.1</td>
</tr>
<tr>
<td>1</td>
<td>39.9</td>
<td>40.3</td>
<td>63.8</td>
<td>82.0</td>
<td>59.3</td>
<td>81.9</td>
<td>9.8</td>
<td>45.8</td>
</tr>
<tr>
<td>2</td>
<td>60.1</td>
<td>58.6</td>
<td>75.0</td>
<td>100.0</td>
<td>76.6</td>
<td>100.0</td>
<td>49.3</td>
<td>84.6</td>
</tr>
<tr>
<td>3</td>
<td>78.2</td>
<td>100.0</td>
<td>76.8</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>64.6</td>
<td>100.0</td>
</tr>
<tr>
<td>4</td>
<td>100.0</td>
<td>100.0</td>
<td>87.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>74.4</td>
<td>100.0</td>
</tr>
<tr>
<td>5</td>
<td>100.0</td>
<td>100.0</td>
<td>88.6</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>80.7</td>
<td>100.0</td>
</tr>
<tr>
<td>6</td>
<td>100.0</td>
<td>100.0</td>
<td>91.8</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>84.6</td>
<td>100.0</td>
</tr>
<tr>
<td>8</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>89.3</td>
<td>100.0</td>
</tr>
<tr>
<td>24</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>
Reaction 1: T3P

<table>
<thead>
<tr>
<th>Time (h) / Solvent</th>
<th>CHCl$_2^e$</th>
<th>2-MeTHFe</th>
<th>DMFe</th>
<th>DMCe</th>
<th>IPAe</th>
<th>EtOAce</th>
<th>CPMEe</th>
<th>TBMEe</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>51.3</td>
<td>16.6</td>
<td>26.5</td>
<td>51.6</td>
<td>33.2</td>
<td>69.6</td>
<td>12.2</td>
<td>1.9</td>
</tr>
<tr>
<td>1</td>
<td>71.5</td>
<td>51.4</td>
<td>33.0</td>
<td>100.0</td>
<td>53.4</td>
<td>100.0</td>
<td>28.7</td>
<td>2.5</td>
</tr>
<tr>
<td>2</td>
<td>78.5</td>
<td>60.7</td>
<td>33.4</td>
<td>100.0</td>
<td>70.6</td>
<td>100.0</td>
<td>53.4</td>
<td>3.1</td>
</tr>
<tr>
<td>3</td>
<td>100.0</td>
<td>64.8</td>
<td>34.6</td>
<td>100.0</td>
<td>80.0</td>
<td>100.0</td>
<td>100.0</td>
<td>3.3</td>
</tr>
<tr>
<td>4</td>
<td>100.0</td>
<td>75.5</td>
<td>37.7</td>
<td>100.0</td>
<td>81.3</td>
<td>100.0</td>
<td>100.0</td>
<td>3.5</td>
</tr>
<tr>
<td>5</td>
<td>100.0</td>
<td>78.8</td>
<td>38.0</td>
<td>100.0</td>
<td>84.8</td>
<td>100.0</td>
<td>100.0</td>
<td>3.8</td>
</tr>
<tr>
<td>6</td>
<td>100.0</td>
<td>95.6</td>
<td>40.4</td>
<td>100.0</td>
<td>88.4</td>
<td>100.0</td>
<td>100.0</td>
<td>4.2</td>
</tr>
<tr>
<td>8</td>
<td>100.0</td>
<td>100.0</td>
<td>42.9</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>4.6</td>
</tr>
<tr>
<td>24</td>
<td>100.0</td>
<td>100.0</td>
<td>44.1</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>5.6</td>
</tr>
</tbody>
</table>
Reaction 2: HATU

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>Solvent</th>
<th>CHCl₂</th>
<th>2-MeTHF</th>
<th>DMF</th>
<th>DMC</th>
<th>IPA</th>
<th>EtOAc</th>
<th>CPME</th>
<th>TBME</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>16.9</td>
<td>32.0</td>
<td>55.4</td>
<td>3.5</td>
<td>19.2</td>
<td>32.5</td>
<td>2.2</td>
<td>3.3</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>87.9</td>
<td>41.7</td>
<td>79.4</td>
<td>100.0</td>
<td>52.5</td>
<td>100.0</td>
<td>6.2</td>
<td>4.6</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>100.0</td>
<td>89.4</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>9.6</td>
<td>7.6</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>100.0</td>
<td>90.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>21.5</td>
<td>12.3</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>100.0</td>
<td>90.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>24.0</td>
<td>12.6</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>36.5</td>
<td>15.1</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>40.6</td>
<td>18.6</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>55.0</td>
<td>23.9</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>77.9</td>
<td>70.4</td>
</tr>
</tbody>
</table>
Reaction 2: COMU

<table>
<thead>
<tr>
<th>Time (h) / Solvent</th>
<th>CHCl₂</th>
<th>2-MeTHF</th>
<th>DMF</th>
<th>DMC</th>
<th>IPA</th>
<th>EtOAc</th>
<th>CPME</th>
<th>TBME</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>47.2</td>
<td>34.2</td>
<td>86.4</td>
<td>84.1</td>
<td>94.2</td>
<td>94.9</td>
<td>29.6</td>
<td>12.3</td>
</tr>
<tr>
<td>1</td>
<td>100.0</td>
<td>95.7</td>
<td>89.3</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>32.3</td>
<td>14.5</td>
</tr>
<tr>
<td>2</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>32.5</td>
<td>14.8</td>
</tr>
<tr>
<td>3</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>35.0</td>
<td>15.7</td>
</tr>
<tr>
<td>4</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>35.0</td>
<td>25.8</td>
</tr>
<tr>
<td>5</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>35.0</td>
<td>31.6</td>
</tr>
<tr>
<td>6</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>35.0</td>
<td>34.8</td>
</tr>
<tr>
<td>8</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>35.0</td>
<td>49.3</td>
</tr>
<tr>
<td>24</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>35.0</td>
<td>49.3</td>
</tr>
<tr>
<td>Time (h) / Solvent</td>
<td>CHCl₂</td>
<td>2-MeTHF</td>
<td>DMF</td>
<td>DMC</td>
<td>IPA</td>
<td>EtOAc</td>
<td>CPME</td>
<td>TBME</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------</td>
<td>---------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>0</td>
<td>60.9</td>
<td>49.0</td>
<td>61.0</td>
<td>95.2</td>
<td>73.4</td>
<td>87.9</td>
<td>63.3</td>
<td>85.2</td>
</tr>
<tr>
<td>1</td>
<td>91.3</td>
<td>77.4</td>
<td>100.0</td>
<td>100.0</td>
<td>90.3</td>
<td>100.0</td>
<td>64.0</td>
<td>98.1</td>
</tr>
<tr>
<td>2</td>
<td>100.0</td>
<td>87.6</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>64.0</td>
<td>100.0</td>
</tr>
<tr>
<td>3</td>
<td>100.0</td>
<td>91.6</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>64.0</td>
<td>100.0</td>
</tr>
<tr>
<td>4</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>64.0</td>
<td>100.0</td>
</tr>
<tr>
<td>5</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>64.0</td>
<td>100.0</td>
</tr>
<tr>
<td>6</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>64.0</td>
<td>100.0</td>
</tr>
<tr>
<td>8</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>64.0</td>
<td>100.0</td>
</tr>
<tr>
<td>24</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>64.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>
Reaction 2: PyBOP

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>CHCl$_2$</th>
<th>2-MeTHF</th>
<th>DMF</th>
<th>DMC</th>
<th>IPA</th>
<th>EtOAc</th>
<th>CPME</th>
<th>TBME</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10.2</td>
<td>94.3</td>
<td>96.0</td>
<td>91.8</td>
<td>97.0</td>
<td>96.5</td>
<td>49.8</td>
<td>47.6</td>
</tr>
<tr>
<td>1</td>
<td>93.9</td>
<td>97.7</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>50.0</td>
<td>53.0</td>
</tr>
<tr>
<td>2</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>54.0</td>
<td>53.0</td>
</tr>
<tr>
<td>3</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>54.0</td>
<td>53.0</td>
</tr>
<tr>
<td>4</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>54.0</td>
<td>53.0</td>
</tr>
<tr>
<td>5</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>54.0</td>
<td>53.0</td>
</tr>
<tr>
<td>6</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>54.0</td>
<td>53.0</td>
</tr>
<tr>
<td>8</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>54.0</td>
<td>53.0</td>
</tr>
<tr>
<td>24</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>54.0</td>
<td>53.0</td>
</tr>
</tbody>
</table>
Reaction 2: T3P

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>CHCl$_2$</th>
<th>2-MeTHF</th>
<th>DMF</th>
<th>DMC</th>
<th>IPA</th>
<th>EtOAc</th>
<th>CPME</th>
<th>TBME</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>58.4</td>
<td>59.5</td>
<td>51.3</td>
<td>100.0</td>
<td>54.4</td>
<td>100.0</td>
<td>100.0</td>
<td>52.0</td>
</tr>
<tr>
<td>1</td>
<td>88.1</td>
<td>67.7</td>
<td>68.5</td>
<td>100.0</td>
<td>77.9</td>
<td>100.0</td>
<td>100.0</td>
<td>52.0</td>
</tr>
<tr>
<td>2</td>
<td>100.0</td>
<td>80.3</td>
<td>78.5</td>
<td>100.0</td>
<td>91.8</td>
<td>100.0</td>
<td>100.0</td>
<td>52.0</td>
</tr>
<tr>
<td>3</td>
<td>100.0</td>
<td>100.0</td>
<td>87.6</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>52.0</td>
</tr>
<tr>
<td>4</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>52.0</td>
</tr>
<tr>
<td>5</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>52.0</td>
</tr>
<tr>
<td>6</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>52.0</td>
</tr>
<tr>
<td>8</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>52.0</td>
</tr>
<tr>
<td>24</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>52.0</td>
</tr>
</tbody>
</table>
Reaction 3: HATU

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>Solvent</th>
<th>CHCl₂</th>
<th>2-MeTHF</th>
<th>DMF</th>
<th>DMC</th>
<th>IPA</th>
<th>EtOAc</th>
<th>CPME</th>
<th>TBME</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>12.9</td>
<td>4.5</td>
<td>61.1</td>
<td>5.9</td>
<td>22.0</td>
<td>20.4</td>
<td>13.0</td>
<td>1.3</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>100</td>
<td>63.5</td>
<td>100.0</td>
<td>82.7</td>
<td>51.3</td>
<td>93.5</td>
<td>20.3</td>
<td>25.1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>100</td>
<td>85.2</td>
<td>100.0</td>
<td>100.0</td>
<td>74.0</td>
<td>100.0</td>
<td>24.7</td>
<td>33.1</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>100</td>
<td>91.8</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>28.4</td>
<td>72.6</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>100</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>32.0</td>
<td>81.9</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>100</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>35.2</td>
<td>93.9</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>100</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>38.8</td>
<td>97.1</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>100</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>44.7</td>
<td>100.0</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>100</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>52.4</td>
<td>100.0</td>
</tr>
</tbody>
</table>
Reaction 3: COMU

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>Solvent</th>
<th>CHCl$_2$</th>
<th>2-MeTHF</th>
<th>DMF</th>
<th>DMC</th>
<th>IPA</th>
<th>EtOAc</th>
<th>CPME</th>
<th>TBME</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>61.0</td>
<td>12.8</td>
<td>54.3</td>
<td>100.0</td>
<td>15.7</td>
<td>61.5</td>
<td>12.5</td>
<td>32.3</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>100.0</td>
<td>95.6</td>
<td>100.0</td>
<td>100.0</td>
<td>94.0</td>
<td>100.0</td>
<td>32.4</td>
<td>43.0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>36.5</td>
<td>43.0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>37.9</td>
<td>43.0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>38.3</td>
<td>43.0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>38.8</td>
<td>43.0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>38.9</td>
<td>43.0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>40.9</td>
<td>43.0</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>48.3</td>
<td>43.0</td>
<td></td>
</tr>
</tbody>
</table>
Reaction 3: DIC/HOBt

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>CHCl₂</th>
<th>2-MeTHF</th>
<th>DMF</th>
<th>DMC</th>
<th>IPA</th>
<th>EtOAc</th>
<th>CPME</th>
<th>TBME</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>29.3</td>
<td>29.6</td>
<td>23.1</td>
<td>36.5</td>
<td>9.7</td>
<td>54.9</td>
<td>8.7</td>
<td>17.3</td>
</tr>
<tr>
<td>1</td>
<td>66.1</td>
<td>84.2</td>
<td>58.6</td>
<td>69.2</td>
<td>23.5</td>
<td>72.6</td>
<td>49.0</td>
<td>33.0</td>
</tr>
<tr>
<td>2</td>
<td>79.0</td>
<td>92.7</td>
<td>80.0</td>
<td>73.3</td>
<td>27.4</td>
<td>86.2</td>
<td>49.0</td>
<td>33.0</td>
</tr>
<tr>
<td>3</td>
<td>84.6</td>
<td>96.4</td>
<td>94.1</td>
<td>78.4</td>
<td>32.1</td>
<td>90.5</td>
<td>49.0</td>
<td>33.0</td>
</tr>
<tr>
<td>4</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>80.7</td>
<td>37.0</td>
<td>100.0</td>
<td>49.0</td>
<td>33.0</td>
</tr>
<tr>
<td>5</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>85.6</td>
<td>37.0</td>
<td>100.0</td>
<td>49.0</td>
<td>33.0</td>
</tr>
<tr>
<td>6</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>90.0</td>
<td>37.0</td>
<td>100.0</td>
<td>49.0</td>
<td>33.0</td>
</tr>
<tr>
<td>8</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>37.0</td>
<td>100.0</td>
<td>49.0</td>
<td>33.0</td>
</tr>
<tr>
<td>24</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>37.0</td>
<td>100.0</td>
<td>49.0</td>
<td>33.0</td>
</tr>
</tbody>
</table>
Reaction 3: PyBOP

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>Solvent</th>
<th>CHCl₂</th>
<th>2-MeTHF</th>
<th>DMF</th>
<th>DMC</th>
<th>IPA</th>
<th>EtOAc</th>
<th>CPME</th>
<th>TBME</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>48.7</td>
<td>46.4</td>
<td>45</td>
<td>23.5</td>
<td>24.6</td>
<td>55.2</td>
<td>17.6</td>
<td>21.5</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>93.9</td>
<td>95.6</td>
<td>73.2</td>
<td>52.1</td>
<td>29.2</td>
<td>65.8</td>
<td>52</td>
<td>45.0</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>94.1</td>
<td>100</td>
<td>91</td>
<td>67.7</td>
<td>30.6</td>
<td>75.3</td>
<td>52</td>
<td>45.0</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>80.1</td>
<td>31.7</td>
<td>84.1</td>
<td>52</td>
<td>45.0</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>81.7</td>
<td>31.9</td>
<td>84.3</td>
<td>52</td>
<td>45.0</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>82</td>
<td>32.1</td>
<td>84.7</td>
<td>52</td>
<td>45.0</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>84.1</td>
<td>36.1</td>
<td>85.6</td>
<td>52</td>
<td>45.0</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>86.3</td>
<td>39.9</td>
<td>87.5</td>
<td>52</td>
<td>45.0</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>40.1</td>
<td>88.7</td>
<td>52</td>
<td>45.0</td>
</tr>
</tbody>
</table>

Electronic Supplementary Material (ESI) for Green Chemistry
This journal is © The Royal Society of Chemistry 2012
Reaction 3: T3P

<table>
<thead>
<tr>
<th>Time (h) / Solvent</th>
<th>CHCl₂</th>
<th>2-MeTHF</th>
<th>DMF</th>
<th>DMC</th>
<th>IPA</th>
<th>EtOAc</th>
<th>CPME</th>
<th>TBME</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>40.0</td>
<td>26.6</td>
<td>20.8</td>
<td>37.4</td>
<td>8.1</td>
<td>31.5</td>
<td>42.0</td>
<td>7.0</td>
</tr>
<tr>
<td>1</td>
<td>51.8</td>
<td>35.1</td>
<td>29.3</td>
<td>51.2</td>
<td>13.6</td>
<td>40.5</td>
<td>42.0</td>
<td>7.0</td>
</tr>
<tr>
<td>2</td>
<td>54.3</td>
<td>37.5</td>
<td>30.7</td>
<td>53.9</td>
<td>13.7</td>
<td>42.9</td>
<td>42.0</td>
<td>7.0</td>
</tr>
<tr>
<td>3</td>
<td>55.3</td>
<td>38.8</td>
<td>31.6</td>
<td>54.2</td>
<td>14.3</td>
<td>45.3</td>
<td>42.0</td>
<td>7.0</td>
</tr>
<tr>
<td>4</td>
<td>57.7</td>
<td>41.4</td>
<td>33.5</td>
<td>56.7</td>
<td>15.8</td>
<td>47.2</td>
<td>42.0</td>
<td>7.0</td>
</tr>
<tr>
<td>5</td>
<td>59.1</td>
<td>43.8</td>
<td>34.0</td>
<td>59.6</td>
<td>16.0</td>
<td>49.5</td>
<td>42.0</td>
<td>7.0</td>
</tr>
<tr>
<td>6</td>
<td>62.5</td>
<td>45.7</td>
<td>34.9</td>
<td>63.4</td>
<td>16.2</td>
<td>51.6</td>
<td>42.0</td>
<td>7.0</td>
</tr>
<tr>
<td>8</td>
<td>64.6</td>
<td>47.3</td>
<td>35.6</td>
<td>64.2</td>
<td>20.6</td>
<td>55.0</td>
<td>42.0</td>
<td>7.0</td>
</tr>
<tr>
<td>24</td>
<td>66.7</td>
<td>48.2</td>
<td>38.7</td>
<td>66.0</td>
<td>22.8</td>
<td>58.5</td>
<td>42.0</td>
<td>7.0</td>
</tr>
</tbody>
</table>
Reaction 4: HATU

<table>
<thead>
<tr>
<th>Time (h) / Solvent</th>
<th>CHCl₂</th>
<th>2-MeTHF</th>
<th>DMF</th>
<th>DMC</th>
<th>IPA</th>
<th>EtOAc</th>
<th>CPME</th>
<th>TBME</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>26.8</td>
<td>33.1</td>
<td>100.0</td>
<td>76.0</td>
<td>39.2</td>
<td>97.2</td>
<td>44.8</td>
<td>91.4</td>
</tr>
<tr>
<td>1</td>
<td>96.3</td>
<td>48.6</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>94.2</td>
<td>74.6</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100</td>
</tr>
<tr>
<td>8</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100</td>
</tr>
<tr>
<td>24</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100</td>
</tr>
</tbody>
</table>
Reaction 4: COMU

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>Solvent</th>
<th>CHCl₂</th>
<th>2-MeTHF</th>
<th>DMF₂</th>
<th>DMC</th>
<th>IPA</th>
<th>EtOAc</th>
<th>CPME</th>
<th>TBME</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>77.0</td>
<td>76.1</td>
<td>80.9</td>
<td>96.9</td>
<td>73.8</td>
<td>100.0</td>
<td>38.7</td>
<td>97.9</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>53.9</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100</td>
</tr>
</tbody>
</table>
Reaction 4: DIC/HOBt

<table>
<thead>
<tr>
<th>Time (h) / Solvent</th>
<th>CDCl₂⁺</th>
<th>2-MeTHF⁺</th>
<th>DMF⁺</th>
<th>DMC⁺</th>
<th>IPA⁺</th>
<th>EtOAc⁺</th>
<th>CPME⁺</th>
<th>TBME⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>72.1</td>
<td>58.9</td>
<td>53.3</td>
<td>54.8</td>
<td>36.2</td>
<td>95.9</td>
<td>88.1</td>
<td>66.7</td>
</tr>
<tr>
<td>1</td>
<td>100.0</td>
<td>100.0</td>
<td>89.1</td>
<td>85.2</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>2</td>
<td>100.0</td>
<td>100.0</td>
<td>93.5</td>
<td>92.4</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>3</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>4</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>5</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>6</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>8</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>24</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Time (h) / Solvent</td>
<td>CHCl$_2$</td>
<td>2-MeTHF</td>
<td>DMF</td>
<td>DMC</td>
<td>IPA</td>
<td>EtOAc</td>
<td>CPME</td>
<td>TBME</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------</td>
<td>---------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>0</td>
<td>88.3</td>
<td>100.0</td>
<td>83.4</td>
<td>100.0</td>
<td>72.6</td>
<td>99.0</td>
<td>79.3</td>
<td>80.7</td>
</tr>
<tr>
<td>1</td>
<td>100.0</td>
<td>100.0</td>
<td>87.4</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>93.2</td>
</tr>
<tr>
<td>2</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>3</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>4</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>5</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>6</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>8</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>24</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>
Reaction 4: T3P

<table>
<thead>
<tr>
<th>Time (h) / Solvent</th>
<th>CHCl₂</th>
<th>2-MeTHF</th>
<th>DMF</th>
<th>DMC</th>
<th>IPA</th>
<th>EtOAc</th>
<th>CPME</th>
<th>TBME</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>81.9</td>
<td>75.9</td>
<td>72.4</td>
<td>78.7</td>
<td>17.6</td>
<td>92.5</td>
<td>97.8</td>
<td>39.9</td>
</tr>
<tr>
<td>1</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>91.6</td>
<td>21.4</td>
<td>100.0</td>
<td>100.0</td>
<td>43.8</td>
</tr>
<tr>
<td>2</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>29.4</td>
<td>100.0</td>
<td>100.0</td>
<td>65.4</td>
</tr>
<tr>
<td>3</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>34.2</td>
<td>100.0</td>
<td>100.0</td>
<td>86.1</td>
</tr>
<tr>
<td>4</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>40.9</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>5</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>55.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>6</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>55.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>8</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>55.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>24</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>55.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>
3.2 Conversion vs. Time Data for Reactions 1-4 Using the Range of Coupling Agents in a Specific Solvent

Reaction 1: TBME

<table>
<thead>
<tr>
<th>Time (h) / Coupling agent</th>
<th>COMU</th>
<th>DIC/HOBt</th>
<th>HATU</th>
<th>PyBOP</th>
<th>T3P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>16.5</td>
<td>10.6</td>
<td>4.2</td>
<td>10.1</td>
<td>1.9</td>
</tr>
<tr>
<td>1</td>
<td>57.8</td>
<td>64.0</td>
<td>65.0</td>
<td>45.8</td>
<td>2.5</td>
</tr>
<tr>
<td>2</td>
<td>79.7</td>
<td>88.5</td>
<td>100.0</td>
<td>84.6</td>
<td>3.1</td>
</tr>
<tr>
<td>3</td>
<td>81.1</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>3.3</td>
</tr>
<tr>
<td>4</td>
<td>83.6</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>3.5</td>
</tr>
<tr>
<td>5</td>
<td>87.2</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>3.8</td>
</tr>
<tr>
<td>6</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>4.2</td>
</tr>
<tr>
<td>8</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>4.6</td>
</tr>
<tr>
<td>24</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>5.6</td>
</tr>
</tbody>
</table>
Reaction 1: CPME

<table>
<thead>
<tr>
<th>Time (h) / Coupling agent</th>
<th>COMU</th>
<th>DIC/HOBt</th>
<th>HATU</th>
<th>PyBOP</th>
<th>T3P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3.2</td>
<td>6.4</td>
<td>6.9</td>
<td>7.3</td>
<td>12.2</td>
</tr>
<tr>
<td>1</td>
<td>7.6</td>
<td>10.9</td>
<td>19.5</td>
<td>9.8</td>
<td>28.7</td>
</tr>
<tr>
<td>2</td>
<td>51.2</td>
<td>15.9</td>
<td>45.0</td>
<td>49.3</td>
<td>53.4</td>
</tr>
<tr>
<td>3</td>
<td>56.5</td>
<td>19.1</td>
<td>65.5</td>
<td>64.6</td>
<td>100.0</td>
</tr>
<tr>
<td>4</td>
<td>62.0</td>
<td>22.4</td>
<td>76.1</td>
<td>74.4</td>
<td>100.0</td>
</tr>
<tr>
<td>5</td>
<td>62.0</td>
<td>24.8</td>
<td>88.4</td>
<td>80.7</td>
<td>100.0</td>
</tr>
<tr>
<td>6</td>
<td>62.0</td>
<td>26.5</td>
<td>96.8</td>
<td>84.6</td>
<td>100.0</td>
</tr>
<tr>
<td>8</td>
<td>62.0</td>
<td>31.0</td>
<td>100.0</td>
<td>89.3</td>
<td>100.0</td>
</tr>
<tr>
<td>24</td>
<td>62.0</td>
<td>31.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>
Reaction 1: CH$_2$Cl$_2$

<table>
<thead>
<tr>
<th>Time (h) / Coupling agent</th>
<th>COMU</th>
<th>DIC/HOBt</th>
<th>HATU</th>
<th>PyBOP</th>
<th>T3P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>25.6</td>
<td>10.5</td>
<td>87.4</td>
<td>14.1</td>
<td>51.3</td>
</tr>
<tr>
<td>1</td>
<td>41.2</td>
<td>41.9</td>
<td>100.0</td>
<td>39.9</td>
<td>71.5</td>
</tr>
<tr>
<td>2</td>
<td>58.2</td>
<td>53.1</td>
<td>100.0</td>
<td>60.1</td>
<td>78.5</td>
</tr>
<tr>
<td>3</td>
<td>77.8</td>
<td>80.9</td>
<td>100.0</td>
<td>78.2</td>
<td>100.0</td>
</tr>
<tr>
<td>4</td>
<td>88.3</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>5</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>6</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>8</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>24</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>
Reaction 1: DMC

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>COMU (%)</th>
<th>DIC/HOBt (%)</th>
<th>HATU (%)</th>
<th>PyBOP (%)</th>
<th>T3P (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>35.4</td>
<td>3.6</td>
<td>6.5</td>
<td>41.5</td>
<td>51.6</td>
</tr>
<tr>
<td>1</td>
<td>50.7</td>
<td>32.8</td>
<td>45.6</td>
<td>82.0</td>
<td>100.0</td>
</tr>
<tr>
<td>2</td>
<td>65.7</td>
<td>56.6</td>
<td>86.2</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>3</td>
<td>88.4</td>
<td>80.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>4</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>5</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>6</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>8</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>24</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>
Reaction 1: DMF

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>COMU</th>
<th>DIC/HOBt</th>
<th>HATU</th>
<th>PyBOP</th>
<th>T3P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>9.6</td>
<td>23.1</td>
<td>100</td>
<td>8.8</td>
<td>7.4</td>
</tr>
<tr>
<td>1</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>63.8</td>
<td>29.9</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>75.0</td>
<td>37.5</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>76.8</td>
<td>48.0</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>87.0</td>
<td>50.0</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>88.6</td>
<td>50.0</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>91.8</td>
<td>50.0</td>
</tr>
<tr>
<td>8</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100.0</td>
<td>50.0</td>
</tr>
<tr>
<td>24</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100.0</td>
<td>50.0</td>
</tr>
</tbody>
</table>
Reaction 1: EtOAc

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>COMU</th>
<th>DIC/HOBt</th>
<th>HATU</th>
<th>PyBOP</th>
<th>T3P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>24.2</td>
<td>31.0</td>
<td>10.9</td>
<td>48.7</td>
<td>69.6</td>
</tr>
<tr>
<td>1</td>
<td>59.5</td>
<td>85.8</td>
<td>65.7</td>
<td>81.9</td>
<td>100.0</td>
</tr>
<tr>
<td>2</td>
<td>84.2</td>
<td>100.0</td>
<td>73.3</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>3</td>
<td>100.0</td>
<td>100.0</td>
<td>94.5</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>4</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>5</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>6</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>8</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>24</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>
Reaction 1: IPA

<table>
<thead>
<tr>
<th>Time (h) / Coupling agent</th>
<th>COMU</th>
<th>DIC/HOBt</th>
<th>HATU</th>
<th>PyBOP</th>
<th>T3P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>14.3</td>
<td>6.7</td>
<td>6.9</td>
<td>6.6</td>
<td>33.2</td>
</tr>
<tr>
<td>1</td>
<td>66.7</td>
<td>51.9</td>
<td>50.3</td>
<td>59.3</td>
<td>53.4</td>
</tr>
<tr>
<td>2</td>
<td>83.7</td>
<td>78.1</td>
<td>65.8</td>
<td>76.6</td>
<td>70.6</td>
</tr>
<tr>
<td>3</td>
<td>100.0</td>
<td>88.5</td>
<td>100.0</td>
<td>100.0</td>
<td>80.0</td>
</tr>
<tr>
<td>4</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>81.3</td>
</tr>
<tr>
<td>5</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>84.8</td>
</tr>
<tr>
<td>6</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>88.4</td>
</tr>
<tr>
<td>8</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>24</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>
Reaction 1: 2-MeTHF

<table>
<thead>
<tr>
<th>Time (h) / Coupling agent</th>
<th>COMU</th>
<th>DIC/HOBt</th>
<th>HATU</th>
<th>PyBOP</th>
<th>T3P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5.1</td>
<td>10.1</td>
<td>0.6</td>
<td>21.0</td>
<td>16.6</td>
</tr>
<tr>
<td>1</td>
<td>44.3</td>
<td>38.3</td>
<td>30.2</td>
<td>40.3</td>
<td>51.4</td>
</tr>
<tr>
<td>2</td>
<td>60.5</td>
<td>59.4</td>
<td>74.2</td>
<td>58.6</td>
<td>60.7</td>
</tr>
<tr>
<td>3</td>
<td>71.5</td>
<td>86.1</td>
<td>100.0</td>
<td>100.0</td>
<td>64.8</td>
</tr>
<tr>
<td>4</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>75.5</td>
</tr>
<tr>
<td>5</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>78.8</td>
</tr>
<tr>
<td>6</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>95.6</td>
</tr>
<tr>
<td>8</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>24</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>
Reaction 2: TBME

<table>
<thead>
<tr>
<th>Time (h) / Coupling agent</th>
<th>COMU</th>
<th>DIC/HOBt</th>
<th>HATU</th>
<th>PyBOP</th>
<th>T3P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>12.3</td>
<td>85.2</td>
<td>3.3</td>
<td>47.6</td>
<td>52.0</td>
</tr>
<tr>
<td>1</td>
<td>14.5</td>
<td>98.1</td>
<td>4.6</td>
<td>53.0</td>
<td>52.0</td>
</tr>
<tr>
<td>2</td>
<td>14.8</td>
<td>100.0</td>
<td>7.6</td>
<td>53.0</td>
<td>52.0</td>
</tr>
<tr>
<td>3</td>
<td>15.7</td>
<td>100.0</td>
<td>12.3</td>
<td>53.0</td>
<td>52.0</td>
</tr>
<tr>
<td>4</td>
<td>25.8</td>
<td>100.0</td>
<td>12.6</td>
<td>53.0</td>
<td>52.0</td>
</tr>
<tr>
<td>5</td>
<td>31.6</td>
<td>100.0</td>
<td>15.1</td>
<td>53.0</td>
<td>52.0</td>
</tr>
<tr>
<td>6</td>
<td>34.8</td>
<td>100.0</td>
<td>18.6</td>
<td>53.0</td>
<td>52.0</td>
</tr>
<tr>
<td>8</td>
<td>49.3</td>
<td>100.0</td>
<td>23.9</td>
<td>53.0</td>
<td>52.0</td>
</tr>
<tr>
<td>24</td>
<td>49.3</td>
<td>100.0</td>
<td>70.4</td>
<td>53.0</td>
<td>52.0</td>
</tr>
</tbody>
</table>
Reaction 2: CPME

<table>
<thead>
<tr>
<th>Time (h) / Coupling agent</th>
<th>COMU</th>
<th>DIC/HOBt</th>
<th>HATU</th>
<th>PyBOP</th>
<th>T3P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>29.6</td>
<td>63.3</td>
<td>2.2</td>
<td>49.8</td>
<td>100.0</td>
</tr>
<tr>
<td>1</td>
<td>32.3</td>
<td>64.0</td>
<td>6.2</td>
<td>50.0</td>
<td>100.0</td>
</tr>
<tr>
<td>2</td>
<td>32.5</td>
<td>64.0</td>
<td>9.6</td>
<td>54.0</td>
<td>100.0</td>
</tr>
<tr>
<td>3</td>
<td>35.0</td>
<td>64.0</td>
<td>21.5</td>
<td>54.0</td>
<td>100.0</td>
</tr>
<tr>
<td>4</td>
<td>35.0</td>
<td>64.0</td>
<td>24.0</td>
<td>54.0</td>
<td>100.0</td>
</tr>
<tr>
<td>5</td>
<td>35.0</td>
<td>64.0</td>
<td>36.5</td>
<td>54.0</td>
<td>100.0</td>
</tr>
<tr>
<td>6</td>
<td>35.0</td>
<td>64.0</td>
<td>40.6</td>
<td>54.0</td>
<td>100.0</td>
</tr>
<tr>
<td>8</td>
<td>35.0</td>
<td>64.0</td>
<td>55.0</td>
<td>54.0</td>
<td>100.0</td>
</tr>
<tr>
<td>24</td>
<td>35.0</td>
<td>64.0</td>
<td>77.9</td>
<td>54.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>
Reaction 2: CH₂Cl₂

<table>
<thead>
<tr>
<th>Time (h) / Coupling agent</th>
<th>COMU</th>
<th>DIC/HOBt</th>
<th>HATU</th>
<th>PyBOP</th>
<th>T3P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>47.2</td>
<td>60.9</td>
<td>16.9</td>
<td>10.2</td>
<td>58.4</td>
</tr>
<tr>
<td>1</td>
<td>100.0</td>
<td>91.3</td>
<td>87.9</td>
<td>93.9</td>
<td>88.1</td>
</tr>
<tr>
<td>2</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>3</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>4</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>5</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>6</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>8</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>24</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>
Reaction 2: DMC

Time (h) / Coupling agent

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>COMU</th>
<th>DIC/HOBt</th>
<th>HATU</th>
<th>PyBOP</th>
<th>T3P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>84.1</td>
<td>95.2</td>
<td>3.5</td>
<td>91.8</td>
<td>100.0</td>
</tr>
<tr>
<td>1</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>2</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>3</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>4</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>5</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>6</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>8</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>24</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>
Reaction 2: DMF

<table>
<thead>
<tr>
<th>Time (h) / Coupling agent</th>
<th>COMU</th>
<th>DIC/HOBt</th>
<th>HATU</th>
<th>PyBOP</th>
<th>T3P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>86.4</td>
<td>61.0</td>
<td>55.4</td>
<td>96.0</td>
<td>51.3</td>
</tr>
<tr>
<td>1</td>
<td>89.3</td>
<td>100.0</td>
<td>79.4</td>
<td>100.0</td>
<td>68.5</td>
</tr>
<tr>
<td>2</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>78.5</td>
</tr>
<tr>
<td>3</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>87.6</td>
</tr>
<tr>
<td>4</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>5</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>6</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>8</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>24</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>
Reaction 2: EtOAc

Table

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>COMU</th>
<th>DIC/HOBt</th>
<th>HATU</th>
<th>PyBOP</th>
<th>T3P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>94.9</td>
<td>87.9</td>
<td>32.5</td>
<td>96.5</td>
<td>100.0</td>
</tr>
<tr>
<td>1</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>2</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>3</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>4</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>5</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>6</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>8</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>24</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Graph

Graph showing % conversion vs. Time (h) for different coupling agents: COMU, DIC/HOBt, HATU, PyBOP, T3P.

Electronic Supplementary Material (ESI) for Green Chemistry
This journal is © The Royal Society of Chemistry 2012
Reaction 2: IPA

<table>
<thead>
<tr>
<th>Time (h) / Coupling agent</th>
<th>COMU</th>
<th>DIC/HOBt</th>
<th>HATU</th>
<th>PyBOP</th>
<th>T3P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>94.2</td>
<td>73.4</td>
<td>19.2</td>
<td>97.0</td>
<td>54.4</td>
</tr>
<tr>
<td>1</td>
<td>100.0</td>
<td>90.3</td>
<td>52.5</td>
<td>100.0</td>
<td>77.9</td>
</tr>
<tr>
<td>2</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>91.8</td>
</tr>
<tr>
<td>3</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>4</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>5</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>6</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>8</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>24</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>
Reaction 2: 2-MeTHF

<table>
<thead>
<tr>
<th>Time (h) / Coupling agent</th>
<th>COMU</th>
<th>DIC/HOBt</th>
<th>HATU</th>
<th>PyBOP</th>
<th>T3P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>34.2</td>
<td>49.0</td>
<td>32.0</td>
<td>94.3</td>
<td>59.5</td>
</tr>
<tr>
<td>1</td>
<td>95.7</td>
<td>77.4</td>
<td>41.7</td>
<td>97.7</td>
<td>67.7</td>
</tr>
<tr>
<td>2</td>
<td>100.0</td>
<td>87.6</td>
<td>89.4</td>
<td>100.0</td>
<td>80.3</td>
</tr>
<tr>
<td>3</td>
<td>100.0</td>
<td>91.6</td>
<td>90.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>4</td>
<td>100.0</td>
<td>100.0</td>
<td>95.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>5</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>6</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>8</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>24</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>
Reaction 3: TBME

<table>
<thead>
<tr>
<th>Time (h) / Coupling agent</th>
<th>COMU</th>
<th>DIC/HOBt</th>
<th>HATU</th>
<th>PyBOP</th>
<th>T3P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>32.3</td>
<td>17.3</td>
<td>1.3</td>
<td>21.5</td>
<td>7.0</td>
</tr>
<tr>
<td>1</td>
<td>43.0</td>
<td>33.0</td>
<td>25.1</td>
<td>45.0</td>
<td>7.0</td>
</tr>
<tr>
<td>2</td>
<td>43.0</td>
<td>33.0</td>
<td>33.9</td>
<td>45.0</td>
<td>7.0</td>
</tr>
<tr>
<td>3</td>
<td>43.0</td>
<td>33.0</td>
<td>72.6</td>
<td>45.0</td>
<td>7.0</td>
</tr>
<tr>
<td>4</td>
<td>43.0</td>
<td>33.0</td>
<td>81.9</td>
<td>45.0</td>
<td>7.0</td>
</tr>
<tr>
<td>5</td>
<td>43.0</td>
<td>33.0</td>
<td>93.9</td>
<td>45.0</td>
<td>7.0</td>
</tr>
<tr>
<td>6</td>
<td>43.0</td>
<td>33.0</td>
<td>97.1</td>
<td>45.0</td>
<td>7.0</td>
</tr>
<tr>
<td>8</td>
<td>43.0</td>
<td>33.0</td>
<td>100.0</td>
<td>45.0</td>
<td>7.0</td>
</tr>
<tr>
<td>24</td>
<td>43.0</td>
<td>33.0</td>
<td>100.0</td>
<td>45.0</td>
<td>7.0</td>
</tr>
</tbody>
</table>
Reaction 3: CPME

<table>
<thead>
<tr>
<th>Time (h) / Coupling agent</th>
<th>COMU</th>
<th>DIC/HOBt</th>
<th>HATU</th>
<th>PyBOP</th>
<th>T3P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>12.5</td>
<td>8.7</td>
<td>13.0</td>
<td>17.6</td>
<td>42.0</td>
</tr>
<tr>
<td>1</td>
<td>32.4</td>
<td>49.0</td>
<td>20.3</td>
<td>52.0</td>
<td>42.0</td>
</tr>
<tr>
<td>2</td>
<td>36.5</td>
<td>49.0</td>
<td>24.7</td>
<td>52.0</td>
<td>42.0</td>
</tr>
<tr>
<td>3</td>
<td>37.9</td>
<td>49.0</td>
<td>28.4</td>
<td>52.0</td>
<td>42.0</td>
</tr>
<tr>
<td>4</td>
<td>38.3</td>
<td>49.0</td>
<td>32.0</td>
<td>52.0</td>
<td>42.0</td>
</tr>
<tr>
<td>5</td>
<td>38.8</td>
<td>49.0</td>
<td>35.2</td>
<td>52.0</td>
<td>42.0</td>
</tr>
<tr>
<td>6</td>
<td>38.9</td>
<td>49.0</td>
<td>38.8</td>
<td>52.0</td>
<td>42.0</td>
</tr>
<tr>
<td>8</td>
<td>40.9</td>
<td>49.0</td>
<td>44.7</td>
<td>52.0</td>
<td>42.0</td>
</tr>
<tr>
<td>24</td>
<td>48.3</td>
<td>49.0</td>
<td>52.4</td>
<td>52.0</td>
<td>42.0</td>
</tr>
</tbody>
</table>
Reaction 3: CH\textsubscript{2}Cl\textsubscript{2}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{reaction_graph.png}
\end{figure}

\begin{table}
\centering
\begin{tabular}{|c|c|c|c|c|c|}
\hline
Time (h) & Coupling agent & COMU & DIC/HOBt & HATU & PyBOP & T3P \\
\hline
0 & 61.0 & 29.3 & 12.9 & 48.7 & 40.0 \\
1 & 100.0 & 66.1 & 100.0 & 93.9 & 51.8 \\
2 & 100.0 & 79.0 & 100.0 & 94.1 & 54.3 \\
3 & 100.0 & 84.6 & 100.0 & 100.0 & 55.3 \\
4 & 100.0 & 100.0 & 100.0 & 100.0 & 57.7 \\
5 & 100.0 & 100.0 & 100.0 & 100.0 & 59.1 \\
6 & 100.0 & 100.0 & 100.0 & 100.0 & 62.5 \\
8 & 100.0 & 100.0 & 100.0 & 100.0 & 64.6 \\
24 & 100.0 & 100.0 & 100.0 & 100.0 & 66.7 \\
\hline
\end{tabular}
\end{table}
Reaction 3: DMC

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>COMU</th>
<th>DIC/HOBt</th>
<th>HATU</th>
<th>PyBOP</th>
<th>T3P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100.0</td>
<td>36.5</td>
<td>5.9</td>
<td>23.5</td>
<td>37.4</td>
</tr>
<tr>
<td>1</td>
<td>100.0</td>
<td>69.2</td>
<td>82.7</td>
<td>52.1</td>
<td>51.2</td>
</tr>
<tr>
<td>2</td>
<td>100.0</td>
<td>73.3</td>
<td>100.0</td>
<td>67.7</td>
<td>53.9</td>
</tr>
<tr>
<td>3</td>
<td>100.0</td>
<td>78.4</td>
<td>100.0</td>
<td>80.1</td>
<td>54.2</td>
</tr>
<tr>
<td>4</td>
<td>100.0</td>
<td>80.7</td>
<td>100.0</td>
<td>81.7</td>
<td>56.7</td>
</tr>
<tr>
<td>5</td>
<td>100.0</td>
<td>85.6</td>
<td>100.0</td>
<td>82.0</td>
<td>59.6</td>
</tr>
<tr>
<td>6</td>
<td>100.0</td>
<td>90.0</td>
<td>100.0</td>
<td>84.1</td>
<td>63.4</td>
</tr>
<tr>
<td>8</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>86.3</td>
<td>64.2</td>
</tr>
<tr>
<td>24</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>66.0</td>
</tr>
</tbody>
</table>
Reaction 3: DMF

<table>
<thead>
<tr>
<th>Time (h) / Coupling agent</th>
<th>COMU</th>
<th>DIC/HOBt</th>
<th>HATU</th>
<th>PyBOP</th>
<th>T3P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>54.3</td>
<td>23.1</td>
<td>61.1</td>
<td>45.0</td>
<td>20.8</td>
</tr>
<tr>
<td>1</td>
<td>100.0</td>
<td>58.6</td>
<td>100.0</td>
<td>73.2</td>
<td>29.3</td>
</tr>
<tr>
<td>2</td>
<td>100.0</td>
<td>80.0</td>
<td>100.0</td>
<td>91.0</td>
<td>30.7</td>
</tr>
<tr>
<td>3</td>
<td>100.0</td>
<td>94.1</td>
<td>100.0</td>
<td>100.0</td>
<td>31.6</td>
</tr>
<tr>
<td>4</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>33.5</td>
</tr>
<tr>
<td>5</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>34.0</td>
</tr>
<tr>
<td>6</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>34.9</td>
</tr>
<tr>
<td>8</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>35.6</td>
</tr>
<tr>
<td>24</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>38.7</td>
</tr>
</tbody>
</table>
Reaction 3: EtOAc

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>COMU</th>
<th>DIC/HOBt</th>
<th>HATU</th>
<th>PyBOP</th>
<th>T3P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>61.5</td>
<td>54.9</td>
<td>20.4</td>
<td>55.2</td>
<td>31.5</td>
</tr>
<tr>
<td>1</td>
<td>100.0</td>
<td>72.6</td>
<td>93.5</td>
<td>65.8</td>
<td>40.5</td>
</tr>
<tr>
<td>2</td>
<td>100.0</td>
<td>86.2</td>
<td>100.0</td>
<td>75.3</td>
<td>42.9</td>
</tr>
<tr>
<td>3</td>
<td>100.0</td>
<td>90.5</td>
<td>100.0</td>
<td>84.1</td>
<td>45.3</td>
</tr>
<tr>
<td>4</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>84.3</td>
<td>47.2</td>
</tr>
<tr>
<td>5</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>84.7</td>
<td>49.5</td>
</tr>
<tr>
<td>6</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>85.6</td>
<td>51.6</td>
</tr>
<tr>
<td>8</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>87.5</td>
<td>55.0</td>
</tr>
<tr>
<td>24</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>88.7</td>
<td>58.5</td>
</tr>
</tbody>
</table>
Reaction 3: IPA

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>COMU</th>
<th>DIC/HOBt</th>
<th>HATU</th>
<th>PyBOP</th>
<th>T3P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>15.7</td>
<td>9.7</td>
<td>22.0</td>
<td>24.6</td>
<td>8.1</td>
</tr>
<tr>
<td>1</td>
<td>94.0</td>
<td>23.5</td>
<td>51.3</td>
<td>29.2</td>
<td>13.6</td>
</tr>
<tr>
<td>2</td>
<td>100.0</td>
<td>27.4</td>
<td>74.0</td>
<td>30.6</td>
<td>13.7</td>
</tr>
<tr>
<td>3</td>
<td>100.0</td>
<td>32.1</td>
<td>100.0</td>
<td>31.7</td>
<td>14.3</td>
</tr>
<tr>
<td>4</td>
<td>100.0</td>
<td>37.0</td>
<td>100.0</td>
<td>31.9</td>
<td>15.8</td>
</tr>
<tr>
<td>5</td>
<td>100.0</td>
<td>37.0</td>
<td>100.0</td>
<td>32.1</td>
<td>16.0</td>
</tr>
<tr>
<td>6</td>
<td>100.0</td>
<td>37.0</td>
<td>100.0</td>
<td>36.1</td>
<td>16.2</td>
</tr>
<tr>
<td>8</td>
<td>100.0</td>
<td>37.0</td>
<td>100.0</td>
<td>39.9</td>
<td>20.6</td>
</tr>
<tr>
<td>24</td>
<td>100.0</td>
<td>37.0</td>
<td>100.0</td>
<td>40.1</td>
<td>22.8</td>
</tr>
</tbody>
</table>
Reaction 3: 2-MeTHF

<table>
<thead>
<tr>
<th>Time (h) / Coupling agent</th>
<th>COMU</th>
<th>DIC/HOBt</th>
<th>HATU</th>
<th>PyBOP</th>
<th>T3P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>12.8</td>
<td>29.6</td>
<td>4.5</td>
<td>46.4</td>
<td>26.6</td>
</tr>
<tr>
<td>1</td>
<td>100.0</td>
<td>84.2</td>
<td>63.5</td>
<td>95.6</td>
<td>35.1</td>
</tr>
<tr>
<td>2</td>
<td>100.0</td>
<td>92.7</td>
<td>85.2</td>
<td>100.0</td>
<td>37.5</td>
</tr>
<tr>
<td>3</td>
<td>100.0</td>
<td>96.4</td>
<td>91.8</td>
<td>100.0</td>
<td>38.8</td>
</tr>
<tr>
<td>4</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>41.4</td>
</tr>
<tr>
<td>5</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>43.8</td>
</tr>
<tr>
<td>6</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>45.7</td>
</tr>
<tr>
<td>8</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>47.3</td>
</tr>
<tr>
<td>24</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>48.2</td>
</tr>
</tbody>
</table>
Reaction 4: TBME

<table>
<thead>
<tr>
<th>Time (h) / Coupling agent</th>
<th>COMU</th>
<th>DIC/HOBt</th>
<th>HATU</th>
<th>PyBOP</th>
<th>T3P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>97.9</td>
<td>66.7</td>
<td>91.4</td>
<td>80.7</td>
<td>39.9</td>
</tr>
<tr>
<td>1</td>
<td>100</td>
<td>100.0</td>
<td>100</td>
<td>93.2</td>
<td>43.8</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>100.0</td>
<td>100</td>
<td>100.0</td>
<td>65.4</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>100.0</td>
<td>100</td>
<td>100.0</td>
<td>86.1</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>100.0</td>
<td>100</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>100.0</td>
<td>100</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>100.0</td>
<td>100</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>8</td>
<td>100</td>
<td>100.0</td>
<td>100</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>24</td>
<td>100</td>
<td>100.0</td>
<td>100</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>
Reaction 4: CPME

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>COMU</th>
<th>DIC/HOBt</th>
<th>HATU</th>
<th>PyBOP</th>
<th>T3P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>38.7</td>
<td>88.1</td>
<td>44.8</td>
<td>79.3</td>
<td>97.8</td>
</tr>
<tr>
<td>1</td>
<td>53.9</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>2</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>3</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>4</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>5</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>6</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>8</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>24</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Reaction 4: CH₂Cl₂

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>COMU</th>
<th>DIC/HOBt</th>
<th>HATU</th>
<th>PyBOP</th>
<th>T3P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>77.0</td>
<td>72.1</td>
<td>26.8</td>
<td>88.3</td>
<td>81.9</td>
</tr>
<tr>
<td>1</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>2</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>3</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>4</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>5</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>6</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>8</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>24</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>
Reaction 4: DMC

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>COMU</th>
<th>DIC/HOBt</th>
<th>HATU</th>
<th>PyBOP</th>
<th>T3P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>96.9</td>
<td>54.8</td>
<td>76.0</td>
<td>100.0</td>
<td>78.7</td>
</tr>
<tr>
<td>1</td>
<td>100.0</td>
<td>85.2</td>
<td>100.0</td>
<td>100.0</td>
<td>91.6</td>
</tr>
<tr>
<td>2</td>
<td>100.0</td>
<td>92.4</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>3</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>4</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>5</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>6</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>8</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>24</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>
Reaction 4: DMF

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>COMU</th>
<th>DIC/HOBt</th>
<th>HATU</th>
<th>PyBOP</th>
<th>T3P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>80.9</td>
<td>58.9</td>
<td>100.0</td>
<td>83.4</td>
<td>72.4</td>
</tr>
<tr>
<td>1</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>87.4</td>
<td>100.0</td>
</tr>
<tr>
<td>2</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>3</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>4</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>5</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>6</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>8</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>24</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>
Reaction 4: EtOAc

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>COMU</th>
<th>DIC/HOBt</th>
<th>HATU</th>
<th>PyBOP</th>
<th>T3P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100.0</td>
<td>95.9</td>
<td>97.2</td>
<td>99.0</td>
<td>92.5</td>
</tr>
<tr>
<td>1</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>2</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>3</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>4</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>5</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>6</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>8</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>24</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>
Reaction 4: IPA

<table>
<thead>
<tr>
<th>Time (h) / Coupling agent</th>
<th>COMU</th>
<th>DIC/HOBt</th>
<th>HATU</th>
<th>PyBOP</th>
<th>T3P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>73.8</td>
<td>36.2</td>
<td>39.2</td>
<td>72.6</td>
<td>13.6</td>
</tr>
<tr>
<td>1</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>23.3</td>
</tr>
<tr>
<td>2</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>27.0</td>
</tr>
<tr>
<td>3</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>32.3</td>
</tr>
<tr>
<td>4</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>34.7</td>
</tr>
<tr>
<td>5</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>37.3</td>
</tr>
<tr>
<td>6</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>40.6</td>
</tr>
<tr>
<td>8</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>43.0</td>
</tr>
<tr>
<td>24</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>62.8</td>
</tr>
</tbody>
</table>
Reaction 4: 2-MeTHF

<table>
<thead>
<tr>
<th>Time (h) / Coupling agent</th>
<th>COMU</th>
<th>DIC/HOBt</th>
<th>HATU</th>
<th>PyBOP</th>
<th>T3P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>76.1</td>
<td>53.3</td>
<td>33.1</td>
<td>100.0</td>
<td>75.9</td>
</tr>
<tr>
<td>1</td>
<td>100.0</td>
<td>89.1</td>
<td>48.6</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>2</td>
<td>100.0</td>
<td>93.5</td>
<td>74.6</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>3</td>
<td>100.0</td>
<td>100.0</td>
<td>98.6</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>4</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>5</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>6</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>8</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>24</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>
3.3 Compound Library – PCA Contributors

Physicochemical parameters were computed using KNIME version 2.6.0. Briefly, an sdf file representing the compound library was generated from ChemDraw. This was loaded into KNIME and a workflow was subsequently generated using the Chemistry Development Kit (CDK) community node to calculate PSA, HBA, HBD, MW, and rotatable bonds. XLogP was determined separately and combined with the other descriptors. The outputs for compounds 5-14 are given below.

<table>
<thead>
<tr>
<th>Compound ID</th>
<th>H-Bond Acceptors</th>
<th>H-Bond Donors</th>
<th>Rotatable Bonds</th>
<th>Polar Surface Area</th>
<th>Molecular Weight</th>
<th>XLogP</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>51.22</td>
<td>276.0666</td>
<td>0.769</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>54.88</td>
<td>267.0619</td>
<td>-0.01</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>51.47</td>
<td>231.0895</td>
<td>0.942</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>72.19</td>
<td>332.016</td>
<td>0.871</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>68.54</td>
<td>245.0688</td>
<td>0.666</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>20.31</td>
<td>329.0415</td>
<td>1.776</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>36.69</td>
<td>256.1212</td>
<td>1.435</td>
</tr>
<tr>
<td>12</td>
<td>7</td>
<td>2</td>
<td>10</td>
<td>93.73</td>
<td>322.1529</td>
<td>1.315</td>
</tr>
<tr>
<td>13</td>
<td>5</td>
<td>1</td>
<td>6</td>
<td>58.64</td>
<td>304.1787</td>
<td>2.428</td>
</tr>
<tr>
<td>14</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>41.99</td>
<td>290.0055</td>
<td>1.307</td>
</tr>
</tbody>
</table>

3.4 Charaterisation Data for Amide Products

Compound 1: 4-Methyl-N-phenylbenzamide

Appearance: White solid.

ν_{max} (neat): 3348, 2918, 2852, 1649, 825 cm$^{-1}$.

1H NMR (400 MHz, CDCl$_3$) δ: 2.41 (s, 3H), 7.14 (t, 1H, $J = 7.6$ Hz), 7.24 (d, 2H, $J = 8.0$ Hz), 7.35 (t, 2H, $J = 8.8$ Hz), 7.65 (dd, 2H, $J = 7.6$, 2.8 Hz), 7.76 (d, 2H, $J = 8.4$ Hz), 8.05 (br s, 1H).

13C NMR (100 MHz, CDCl$_3$) δ: 21.4, 120.3, 124.3, 127.0, 128.9, 129.3, 132.0, 138.0, 142.2, 165.9.

HRMS (C$_{16}$H$_{13}$NO) [M+H$^+$] requires 212.1070, found [M+H$^+$] 212.1069.

Compound 2: N-(4-Methoxybenzyl)-4-methylbenzamide

Appearance: Pale yellow crystalline solid.

ν_{max} (neat): 3246, 2918, 2833, 1033, 1633, 839 cm$^{-1}$.

1H NMR (400 MHz, CDCl$_3$) δ: 2.37 (s, 3H), 3.77 (s, 3H), 4.52 (d, 2H, $J = 4.4$ Hz), 6.78 (br s, 1H), 6.84 (d, 2H, $J = 8.8$ Hz), 7.18 (d, 2H, $J = 8.0$ Hz), 7.24 (d, 2H, $J = 8.8$ Hz), 7.68 (d, 2H, $J = 8.4$ Hz).
13C NMR (100 MHz, CDCl$_3$) δ: 21.3, 43.4, 55.2, 114.0, 126.9, 129.0, 129.1, 130.3, 131.4, 141.7, 158.9, 167.4.

HRMS (C$_{18}$H$_{17}$NO$_2$) [M+H$^+$] requires 256.1332, found [M+H$^+$] 256.1334.

Compound 3: N$_2$Diphenylacетamide

Appearance: White solid.

ν max (neat): 3254, 2920, 2850, 1656, 1440, 1159 cm$^{-1}$.

1H NMR (400 MHz, CDCl$_3$) δ: 3.74 (s, 2H), 7.09 (t, 1H, $J = 7.6$ Hz), 7.24 (br s, 1H), 7.29 (t, 2H, $J = 8.4$ Hz), 7.34-7.44 (m, 7H).

13C NMR (100 MHz, CDCl$_3$) δ: 44.8, 119.9, 124.5, 127.6, 128.9, 129.2, 129.5, 134.4, 137.6, 169.2.

HRMS (C$_{14}$H$_{13}$NO) [M+H$^+$] requires 212.1070, found [M+H$^+$] 212.1070.

Compound 4: N-(4-Methoxybenzyl)-2-phenylacetamide

Appearance: White solid.

ν max (neat): 3238, 2920, 2850, 1649, 1026, 815 cm$^{-1}$.

1H NMR (400 MHz, CDCl$_3$) δ: 3.62 (s, 2H), 3.79 (s, 3H), 4.36 (d, 2H, $J = 5.5$ Hz), 5.62 (br s, 1H), 6.83 (d, 2H, $J = 8.4$ Hz), 7.11 (d, 2H, $J = 8.4$ Hz), 7.26-7.31 (m, 4H), 7.33-7.37 (m, 2H).

13C NMR (100 MHz, CDCl$_3$) δ: 29.7, 43.0, 43.8, 114.0, 127.3, 128.8, 129.0, 129.4, 130.1, 134.8, 158.9, 170.8.

HRMS (C$_{16}$H$_{17}$NO$_2$) [M+H$^+$] requires 256.1332, found [M+H$^+$] 256.1334.

Compound 5: 2-Chloro-N-(2-Methoxybenzyl)nicotinamide

Appearance: White solid.

ν max (neat): 3248, 2916, 2833, 1633, 1244, 746 cm$^{-1}$.

1H NMR (400 MHz, CDCl$_3$) δ: 3.76 (s, 3H), 4.51 (d, 2H, $J = 5.5$ Hz), 5.61 (d, 2H, $J = 8.5$ Hz), 6.84 (d, 2H, $J = 8.5$ Hz), 7.01 (br s, 1H), 7.23-7.27 (m, 3H), 7.94 (dd, 1H, $J = 7.5$, 2.0 Hz), 8.34 (dd, 1H, $J = 7.5$, 2.0 Hz).

13C NMR (100 MHz, CDCl$_3$) δ: 43.6, 55.2, 114.0, 122.6, 129.1, 129.3, 131.4, 139.3, 147.0, 150.6, 159.0, 164.6.

HRMS (C$_{16}$H$_{13}$CIN$_2$O$_2$) [M+H$^+$] requires 277.0738, found [M+H$^+$] 277.0741.
Compound 6: N-(4-[(Trifluoromethyl)phenyl]pyrazine-2-carboxamide

![Chemical Structure of Compound 6](image)

Appearance: Pale yellow solid.

ν_{max} (neat): 3253, 2920, 2850, 1633, 1244 cm$^{-1}$.

1H NMR (400 MHz, CDCl$_3$) δ: 7.66 (d, 2H, $J = 8.8$ Hz), 7.90 (d, 2H, $J = 8.8$ Hz), 8.62 (dd, 1H, $J = 4.0, 1.6$ Hz), 8.85 (d, 1H, $J = 6.0$ Hz), 9.53 (d, 1H, $J = 1.6$ Hz), 9.84 (br s, 1H).

13C NMR (100 MHz, CDCl$_3$) δ: 119.0, 123.5 ($^1J = 270$ Hz), 126.0, ($^2J = 4$ Hz), 126.4 ($^2J = 24$ Hz), 139.7, 141.9, 143.4, 144.3, 147.4, 160.5.

HRMS (C$_{12}$H$_{8}$N$_3$O) [M+H$^+$] requires 268.0692, found [M+H$^+$] 268.0697.

Compound 7: N-(2-Methoxybenzyl)furan-3-carboxamide

![Chemical Structure of Compound 7](image)

Appearance: Yellow-orange solid.

ν_{max} (neat): 3242, 2918, 2833, 1633, 1244, 1033 cm$^{-1}$.

1H NMR (400 MHz, CDCl$_3$) δ: 3.89 (s, 3H), 4.62 (d, 2H, $J = 6.0$ Hz), 6.48 (dd, 1H, $J = 2.0, 1.6$ Hz), 6.89-6.96 (m, 3H), 7.11 (dd, 1H, $J = 2.4, 0.8$ Hz), 7.28 (dt, 1H, $J = 7.6, 1.6$ Hz), 7.34 (dd, 1H, $J = 7.2, 1.6$ Hz), 7.42 (dd, 1H, $J = 1.6, 0.8$ Hz).

13C NMR (100 MHz, CDCl$_3$) δ: 38.9, 55.3, 110.3, 112.0, 114.1, 120.7, 125.9, 129.8, 143.7, 148.1, 157.6, 158.1.

HRMS (C$_{13}$H$_{12}$NO$_3$) [M+H$^+$] requires 232.0968, found [M+H$^+$] 232.0969.

Compound 8: 2-(2-(4-Bromophenyl)acetamido)benzamide

![Chemical Structure of Compound 8](image)

Appearance: White solid.

ν_{max} (neat): 3259, 3061, 3001, 2918, 2833, 1631, 1610, 1236, 1174, 1033 cm$^{-1}$.

1H NMR (400 MHz, CDCl$_3$) δ: 3.69 (s, 2H), 5.89 (br s, 1H), 6.10 (br s, 1H), 7.08 (dt, 1H, $J = 7.5, 1.5$ Hz), 7.26 (d, 2H, $J = 8.5$), 7.48-7.51 (m, 4H), 8.63 (d, 1H), 11.3 (br s, 1H).

13C NMR (100 MHz, CDCl$_3$) δ: 45.0, 118.5, 121.3, 121.5, 122.9, 127.2, 131.2, 131.9, 133.4, 133.5, 140.1, 169.3, 171.2.

HRMS (C$_{15}$H$_{13}$BrN$_2$O$_2$) [M+H$^+$] requires 333.0233, found [M+H$^+$] 333.0237.
Compound 9: Methyl 4-(furan-2-carboxamido)benzoate

Appearance: White solid.

ν_{max} (neat): 3246, 2918, 2833, 1633, 1610, 1244, 748 cm$^{-1}$.

1H NMR (400 MHz, CDCl$_3$) δ: 3.90 (s, 3H), 6.57 (dd, 1H, $J = 3.5, 2.0$ Hz), 7.27 (d, 1H, $J = 7.0$ Hz), 7.51 (dd, 1H, $J = 2.0, 0.5$), 7.75 (d, 2H, $J = 8.5$ Hz), 8.04 (d, 2H, $J = 8.5$ Hz), 8.30 (br s, 1H).

13C NMR (100 MHz, CDCl$_3$) δ: 52.0, 112.8, 115.9, 119.0, 125.8, 130.9, 141.6, 144.5, 147.4, 156.0, 166.5.

HRMS (C$_{13}$H$_{11}$NO$_4$) [M+H$^+$] requires 246.0761, found [M+H$^+$] 246.0763.

Compound 10: 2-(4-Bromophenyl)-1-(3,4-dihydroisoquinolin-2(1H)-yl)ethanone

Appearance: White solid.

ν_{max} (neat): 2918, 2833, 1633, 1244, 746 cm$^{-1}$.

1H NMR (400 MHz, DMSO-d$_6$, 80 °C) δ: 2.80 (t, 2H, $J = 6.0$ Hz), 3.72 (t, 2H, $J = 6.0$ Hz), 3.79 (s, 2H), 4.65 (br s, 2H), 7.16 (br s, 4H), 7.22 (d, 2H, $J = 8.0$ Hz), 7.47 (t, 2H, $J = 8.0$ Hz).

13C NMR (125 MHz, CDCl$_3$, 77 °C) δ: 27.9, 28.6, 42.9, 43.7, 46.7, 119.4, 119.5, 126.1, 126.11 126.2, 126.3, 126.4, 126.5, 128.3, 128.5, 131.0, 131.0, 131.5, 131.6, 133.2, 133.5, 134.4, 134.7, 135.3, 135.4. Variable temperature 13C NMR up to 90 °C failed to resolve the rotameric carbons.

HRMS (C$_{17}$H$_{16}$BrNO) [M+H$^+$] requires 330.0488, found [M+H$^+$] 330.0492.

Compound 11: Furan-3-yl(4-phenylpiperazin-1-yl)methanone

Appearance: Red-brown gummy solid.

ν_{max} (neat): 2916, 2848, 1633, 1236, 1010, 750 cm$^{-1}$.

1H NMR (400 MHz, CDCl$_3$) δ: 3.26 (t, 4H, $J = 5.0$ Hz), 3.99 (br s, 4H), 6.51 (dd, 1H, $J = 5.0, 1.5$ Hz), 6.93 (t, 1H, $J = 7.5$ Hz), 6.97 (d, 2H, $J = 8.0$ Hz), 7.07 (d, 1H, $J = 3.5$ Hz), 7.30 (dt, 2H, $J = 8.0, 1.0$ Hz), 7.51 (d, 1H, $J = 1.0$ Hz).

13C NMR (100 MHz, CDCl$_3$) δ: 29.7, 31.9, 49.7, 111.4, 116.6, 116.7, 120.6, 129.3, 143.8, 147.9, 150.9, 159.1.

HRMS (C$_{15}$H$_{16}$N$_2$O$_2$) [M+H$^+$] requires 257.1290, found [M+H$^+$] 257.1287.
Compound 12: Ethyl 3-((tert-butoxycarbonyl)amino)acetamido)benzoate

Appearance: Opaque oil.

ν_{max} (neat): 3323, 2978, 2933, 1710, 1681, 1284, 1161 cm$^{-1}$.

1H NMR (400 MHz, CDCl$_3$) δ: 1.34 (t, 3H, $J = 7.2$ Hz), 1.44 (s, 9H), 4.00 (d, 2H, $J = 4.4$ Hz), 4.33 (q, 2H, $J = 7.2$ Hz), 5.74 (br s, 1H), 7.33 (t, 1H, $J = 8.0$ Hz), 7.74 (d, 1H, $J = 8.0$ Hz), 7.85 (d, 1H, $J = 8.0$ Hz), 8.05 (s, 1H), 8.93 (br s, 1H, NH).

13C NMR (100 MHz, CDCl$_3$) δ: 14.1, 28.2, 45.0, 61.1, 80.4, 120.8, 124.4, 125.3, 128.9, 131.0, 137.8, 156.5, 166.2, 168.3.

HRMS (C$_{16}$H$_{22}$N$_2$O$_5$) [M+H$^+$] requires 323.1601, found [M+H$^+$] 323.1606.

Compound 13: tert-Butyl 4-benzamidopiperidine-1-carboxylate

Appearance: Off-white solid.

ν_{max} (neat): 3261, 2918, 2833, 1631, 839 cm$^{-1}$.

1H NMR (400 MHz, CDCl$_3$) δ: 1.36-1.46 (m, 11H), 2.01 (dd, 2H, $J = 12.4$, 2.8 Hz), 2.90 (dt, 2H, $J = 12.0$, 2.4 Hz), 4.07-4.17 (m, 3H), 6.17 (d, 1H, $J = 7.6$ Hz), 7.39-7.43 (m, 2H), 7.47-7.51 (m, 1H), 7.75-7.78 dd, 2H, $J = 7.2$, 1.6 Hz).

13C NMR (100 MHz, CDCl$_3$) δ: 28.4, 32.1, 42.7, 47.2, 79.7, 126.9, 128.5, 131.5, 134.5, 154.7, 166.9.

HRMS (C$_{17}$H$_{24}$N$_2$O$_3$) [M+H$^+$] requires 305.1860, found [M+H$^+$] 305.1862.

Compound 14: N-(2-Bromophenyl)-6-methylpicolinamide

Appearance: White solid.

ν_{max} (neat): 3253, 2918, 2852, 1633, 839 cm$^{-1}$.

1H NMR (400 MHz, CDCl$_3$) δ: 2.66 (s, 3H), 7.01 (dt, 1H, ArH, $J = 8.0$, 1.6 Hz), 7.34-7.40 (m, 2H), 7.60 (dd, 1H, $J = 8.0$, 1.6 Hz), 7.79 (t, 1H, $J = 7.6$ Hz), 8.09 (d, 1H, $J = 7.6$ Hz), 8.66 (dd, 1H, $J = 8.0$, 1.6 Hz), 10.86 (br s, 1H).

13C NMR (100 MHz, CDCl$_3$) δ: 24.3, 113.8, 119.4, 121.1, 124.9, 126.3, 128.3, 132.4, 136.0, 137.7, 148.9, 157.3, 162.4.

HRMS (C$_{13}$H$_1$BrN$_2$O) [M+H$^+$] requires 291.0128, found [M+H$^+$] 291.0132.
3.5 IR, 1H NMR, 13C NMR, HRMS, and HPLC Spectra for Compounds 1-14

Compound 1: 4-Methyl-N-phenylbenzamide

1H NMR:

13C NMR:
FTIR:

HRMS:
DM93 MW=2117
(MeOH)MeOH + NH4Ac
EPSRC National Centre Swansea
LTQ Orbitrap XL
Donna MacMillan
31/10/2012 15:37:31

Observed Data

Theoretical Isotope Model: [M + H]^+

NL:
9.56E7
STRWAT014-OJ-HNESP-2#30-50 RT: 0.75-1.28 AV: 20 T:
FTMS + p NSI Full ms [120.00-2000.00]

NL:
2.00E4
C_{14}H_{13}NOH:
C_{14}H_{14}N_1O_3
p (gss, s /p:40) Chrg 1
R: 100000 Res. Pwr. @FWHM
HPLC assay:

<table>
<thead>
<tr>
<th>Substrate</th>
<th>R_t (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toluic acid</td>
<td>1.78</td>
</tr>
<tr>
<td>Aniline</td>
<td>0.58</td>
</tr>
<tr>
<td>Compound 1: 4-Methyl-N-phenylbenzamide</td>
<td>2.46</td>
</tr>
<tr>
<td>Dibenzyl ether (standard)</td>
<td>4.24</td>
</tr>
<tr>
<td>Bromobenzene (standard)</td>
<td>3.18</td>
</tr>
</tbody>
</table>
Compound 2: N-(4-Methoxybenzyl)-4-methylbenzamide

1H NMR:

13C NMR:
FTIR:

![FTIR spectrum](image)

HRMS:

```
SM: 7G

<table>
<thead>
<tr>
<th>m/z</th>
<th>Relative Abundance</th>
</tr>
</thead>
<tbody>
<tr>
<td>256.1332</td>
<td>100</td>
</tr>
<tr>
<td>256.1334</td>
<td>99.7</td>
</tr>
<tr>
<td>257.1368</td>
<td>99.7</td>
</tr>
<tr>
<td>257.1366</td>
<td>99.7</td>
</tr>
</tbody>
</table>

Observed Data

Theoretical Isotope Model: [M + H]+

NL: 3.68E6
STRWAT013-OJ-HNESP#29-44 RT: 0.88-1.29 AV: 15 T:
FTMS + p NSI Full ms [120.00-2000.00]

NL: 1.95E4
C_{16}H_{17}NO_2 H:
C_{16}H_{18}N_2O_3
p (gss, s /p-40) Chg 1
R: 100000 Res . Pwr . @FWHM
```

Electronic Supplementary Material (ESI) for Green Chemistry
This journal is © The Royal Society of Chemistry 2012
HPLC assay:

<table>
<thead>
<tr>
<th>Substrate</th>
<th>R_t (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toluic acid</td>
<td>1.78</td>
</tr>
<tr>
<td>p-Methoxybenzylamine</td>
<td>0.24</td>
</tr>
<tr>
<td>Compound 2: N-(4-Methoxybenzyl)-4-methylbenzamide</td>
<td>2.24</td>
</tr>
<tr>
<td>Dibenzyl ether (standard)</td>
<td>4.23</td>
</tr>
<tr>
<td>Bromobenzene (standard)</td>
<td>3.17</td>
</tr>
</tbody>
</table>
Compound 3: \(N,2 \)-Diphenylacetamide

\(^1\)H NMR:

\[^{13}\text{C}\] NMR:
FTIR:

HRMS:

DM92 MW=2127
(MeOH)/MeOH + NH4OAc

(£PSRC National Centre Swansea
LTQ Orbitrap XL
Donna MacMillan
29/10/2012 21:47:11

Observed Data

Theoretical Isotope Model: [M + H]+

NL:
2.80E7
STRWAT016-OJ-HNESP#30-45 RT: 0.92-1.27 AV: 13 T:
FTMS + p NSI Full ms
[120.00-2000.00]

NL:
2.00E4
C_{14}H_{13}NOH:
C_{14}H_{12}N_{1}O_{4}
p (g8, s/p:40) Chrg 1
R: 100000 Res .Pwr . @FWHM
HPLC assay:

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Rₜ (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenylacetic acid</td>
<td>1.26</td>
</tr>
<tr>
<td>Aniline</td>
<td>0.58</td>
</tr>
<tr>
<td>Compound 3: N₂-Diphenylacetamide</td>
<td>2.19</td>
</tr>
<tr>
<td>Dibenzyl ether (standard)</td>
<td>4.24</td>
</tr>
<tr>
<td>Bromobenzene (standard)</td>
<td>3.18</td>
</tr>
</tbody>
</table>
Compound 4: N-(4-Methoxybenzyl)-2-phenylacetamide

1H NMR:

13C NMR:
HPLC assay:

<table>
<thead>
<tr>
<th>Substrate</th>
<th>R_t (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenylacetic acid</td>
<td>1.63</td>
</tr>
<tr>
<td>p-Methoxybenzylamine</td>
<td>0.24</td>
</tr>
<tr>
<td>Compound 4: N-(4-Methoxybenzyl)-2-phenylacetamide</td>
<td>2.03</td>
</tr>
<tr>
<td>Dibenzyl ether (standard)</td>
<td>4.23</td>
</tr>
<tr>
<td>Bromobenzene (standard)</td>
<td>3.17</td>
</tr>
</tbody>
</table>
Compound 5: 2-Chloro-N-(2-Methoxybenzyl)nicotinamide

1H NMR:

13C NMR:
HPLC assay:

<table>
<thead>
<tr>
<th>Substrate</th>
<th>R<sub>t</sub> (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Chloronicotinic acid</td>
<td>1.26</td>
</tr>
<tr>
<td>2-Methoxybenzylamine</td>
<td>0.4, 1.87</td>
</tr>
<tr>
<td>Compound 5: 2-Chloro-N-(2-Methoxybenzyl)nicotinamide</td>
<td>1.76</td>
</tr>
<tr>
<td>Bromobenzene (standard)</td>
<td>3.18</td>
</tr>
</tbody>
</table>
Compound 6: \(N-(4\text{-}(\text{Trifluoromethyl})\text{phenyl})\text{pyrazine-2-carboxamide} \)

\(^1H \text{NMR:} \)

\(^{13}C \text{NMR:} \)
FTIR:

HRMS:

DM1024 MW=267?
ASAP (MeOH)
EPSRC National Centre Swansea
LTQ Orbitrap XL
MacMillan
09/11/2012 08:41:05

STRWAT007 P-G HAP #16-19 RT: 0.47 0.55 AV: 4 SM: 7G NL: 8.01E6
T: FTMS + p APCI corona Full ms [100.00-800.00]
HPLC assay:

![HPLC assay graph]

<table>
<thead>
<tr>
<th>Component</th>
<th>R<sub>t</sub> (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Trifluoromethyl aniline</td>
<td>2.18</td>
</tr>
<tr>
<td>2-Pyrazine carboxylic acid</td>
<td>1.18</td>
</tr>
<tr>
<td>Compound 6: N-(4-(Trifluoromethyl)phenyl)pyrazine-2-carboxamide</td>
<td>2.52</td>
</tr>
<tr>
<td>Bromobenzene (standard)</td>
<td>3.18</td>
</tr>
</tbody>
</table>
Compound 7: N-(2-Methoxybenzyl)furan-3-carboxamide

\[\text{H NMR:} \]

\[\text{C NMR:} \]

Electronic Supplementary Material (ESI) for Green Chemistry
This journal is © The Royal Society of Chemistry 2012
HPLC assay:

<table>
<thead>
<tr>
<th>Component</th>
<th>Rt (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Furoic acid</td>
<td>1.28</td>
</tr>
<tr>
<td>2-Methoxybenzylamine</td>
<td>0.4, 1.87</td>
</tr>
<tr>
<td>Compound 7: N-(2-Methoxybenzyl)furan-3-carboxamide</td>
<td>1.90</td>
</tr>
<tr>
<td>Bromobenzene (standard)</td>
<td>3.18</td>
</tr>
</tbody>
</table>
Compound 8: 2-(2-(4-Bromophenyl)acetamido)benzamide

1H NMR:

13C NMR:
FTIR:

HRMS:

DM1029 MW=3327
(MeOH)/MeOH + NH4OAc
EPSRC National Centre Swansea
LTQ Orbitrap XL
Donna MacMillan
29/10/2012 21:43:44

STRWAT010-OJ-HNESD #2B-45 RT: 0.84-1.30 AV: 17 SM: 7G NL: 1.02E7
T: FTMS + p NSI Full ms [120.00-2000.00]
HPLC assay:

<table>
<thead>
<tr>
<th>Component</th>
<th>Rt (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromophenyl acetic acid</td>
<td>1.92</td>
</tr>
<tr>
<td>2-Aminobenzamide</td>
<td>1.14</td>
</tr>
<tr>
<td>Compound 8: 2-(2-(4-Bromophenyl)acetamido)benzamide</td>
<td>2.13</td>
</tr>
<tr>
<td>Bromobenzene (standard)</td>
<td>3.18</td>
</tr>
</tbody>
</table>
Compound 9: Methyl 4-(furan-2-carboxamido)benzoate

1H NMR:

13C NMR:
<table>
<thead>
<tr>
<th>Component</th>
<th>R<sub>t</sub> (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Furoic acid</td>
<td>1.34</td>
</tr>
<tr>
<td>Methyl 4-aminobenzoate</td>
<td>1.61</td>
</tr>
<tr>
<td>Compound 9: Methyl 4-(furan-2-carboxamido)benzoate</td>
<td>1.94</td>
</tr>
<tr>
<td>Bromobenzene (standard)</td>
<td>3.18</td>
</tr>
</tbody>
</table>
Compound 10: 2-(4-Bromophenyl)-1-(3,4-dihydroisoquinolin-2(1H)-yl)ethanone

1H NMR:

13C NMR:
FTIR:

HRMS:

DM1035-2 MW=329?
(MeOH)/MeOH + NH4OAc
EPSRC National Centre Swansea
LTO/Orbitrap XL
Donna MacMillan
29/10/2012 21:33:27

STRWAT012-OJ-HNESp #31-43 RT: 0.96-1.27 AV: 12 SM: 7G NL: 1.84E6
T: FTMS + p NSI Full ms [120.00-2000.00]

Relative Abundance

328.0338 336.9863 340.9376 344.9849 348.9735 352.0310 362.0390
364.9682 371.1016 376.9748 386.0188 388.1281

m/z

0 10 20 30 40 50 60 70 80 90 100

320 330 340 350 360 370 380 390
HPLC assay:

<table>
<thead>
<tr>
<th>Component</th>
<th>R<sub>t</sub> (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromo phenyl acetic acid</td>
<td>1.92</td>
</tr>
<tr>
<td>1,2,3,4-Tetrahydroisoquinoline</td>
<td>0.42, 0.95</td>
</tr>
<tr>
<td>Compound10: 2-(4-Bromophenyl)-1-(3,4-dihydroisoquinolin-2(1H)-yl)ethanone</td>
<td>3.41</td>
</tr>
<tr>
<td>Bromobenzene (standard)</td>
<td>3.18</td>
</tr>
</tbody>
</table>
Compound 11: Furan-3-yl(4-phenylpiperazin-1-yl)methanone

1H NMR:

13C NMR:
Electronic Supplementary Material (ESI) for Green Chemistry
This journal is © The Royal Society of Chemistry 2012
HPLC assay:

<table>
<thead>
<tr>
<th>Component</th>
<th>R_t (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Furoic acid</td>
<td>1.30</td>
</tr>
<tr>
<td>1-Phenyl piperazine</td>
<td>0.30, 0.44, 1.65</td>
</tr>
<tr>
<td>Compound 11: Furan-3-yl(4-phenylpiperazin-1-y1)methanone</td>
<td>2.11</td>
</tr>
<tr>
<td>Bromobenzene (standard)</td>
<td>3.18</td>
</tr>
</tbody>
</table>
Compound 12: Ethyl 3-((2-tert-butoxycarbonyl)amino)acetamido)benzoate

1H NMR:

13C NMR:
HPLC assay:

<table>
<thead>
<tr>
<th>Component</th>
<th>R_t (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethyl 3-aminobenzoate</td>
<td>1.76</td>
</tr>
<tr>
<td>Compound 12: Ethyl 3-((tert-butoxycarbonyl)amino)acetamido)benzoate</td>
<td>2.27</td>
</tr>
<tr>
<td>Bromobenzene (standard)</td>
<td>3.18</td>
</tr>
</tbody>
</table>
Compound 13: tert-Butyl 4-benzamidopiperidine-1-carboxylate

1H NMR:

13C NMR:
FTIR:

HRMS:

DM1065 MW=3047 EPSRC National Centre Swansea Donna MacMillan
(MeOH)/MeOH + NH4OAc LTQ Orbitrap XL 29/10/2012 21:30:00
T: FTMS + p NSI Full ms [200.00-4000.00]
HPLC assay:

<table>
<thead>
<tr>
<th>Component</th>
<th>(R_t) (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzoic acid</td>
<td>1.61</td>
</tr>
<tr>
<td>Compound 13: (\text{tert-Butyl 4-})benzamidopiperidine-1-carboxylate</td>
<td>2.24</td>
</tr>
<tr>
<td>Bromobenzene (standard)</td>
<td>3.18</td>
</tr>
</tbody>
</table>
Compound 14: N-(2-Bromophenyl)-6-methylpicolinamide

1H NMR:

13C NMR:
<table>
<thead>
<tr>
<th>Component</th>
<th>R_t (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Methyl picolinic acid</td>
<td>0.29, 0.42</td>
</tr>
<tr>
<td>2-Bromo aniline</td>
<td>2.07</td>
</tr>
<tr>
<td>Compound 14: N-(2-Bromophenyl)-6-methylpicolinamide</td>
<td>4.44</td>
</tr>
<tr>
<td>Bromobenzene (standard)</td>
<td>3.18</td>
</tr>
</tbody>
</table>
4. References