Electronic Supplementary Information

Suzuki-Miyaura Cross Coupling Reaction from a Low-Leaching and Highly Recyclable Gold-Supported Palladium Material and Two Types of Microwave Equipment

Mohammad Al-Amin¹, Masayoshi Akimoto², Tsuyoshi Tameno², Yuuta Ohki², Naoyuki Takahashi², Naoyuki Hoshiya^{1, 3}, Satoshi Shuto¹ and Mitsuhiro Arisawa¹*

¹ Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan

² Tokyo Rikakikai Company Limited, Nihonbashi-honmachi 3-3-4, Chuo-ku, Tokyo 103-0023, Japan

³ Furuya Metal Company Limited, Minami-otsuka 2-37-5, Toshima-ku, Tokyo 170-0005, Japan

General

¹H-NMR spectra were recorded in CDCl₃ at 25 °C unless otherwise noted, at 400 or 500 MHz, with TMS as an internal standard. ¹³C-NMR spectra were recorded in CDCl₃ at 25 °C unless otherwise noted, at 100 or 125 MHz. Mass spectra were obtained using a JEOL JMS-700TZ. ICP-mass spectra were obtained on an AGILRNT ICP-MS 7500CS. HPLC was carried out using a Mighysil RP-18 (Kanto Chemical Co. Inc) and HPLC spectra were detected by a Shimadzu SPD-10AV (254 nm) and recorded by a Shimadzu CR-8A. Column chromatography were performed with silica gel 60N (spherical, neutral, 63-210 mm, Kanto Chemical Co., Inc.) unless otherwise stated. Microwave instrument were performed with EYELA MWO-1000S and EYELA NWS-1000 for single-mode and multi-mode, respectively.

Preparation of Sulfur-modified Au-supported Pd material SAPd

To a stirring ice cooled 98% H₂SO₄ (4.7 g) was added Na₂S₂O₈ (4.0 g) in a small portions and then the crushed ice (13.0 g) and water (4.0 g) were added to the above solution while the temperature was kept below 15 °C. When all the salt dissolved to a homogeneous solution, the Au (100 mesh-14 × 12 mm², 100.7 mg) was placed in the above solution (3.0 mL) for 5 min and then washed first by H₂O (3.0 mL × 10) and then with EtOH (3.0 mL × 6). The resulted Au-mesh was placed in a round bottom flask and dried for 10 min under reduced pressure (*ca*. 6 mm Hg). The resulting sulfur-modified Au was placed in a solution of Pd(OAc)₂ (5.3 mg, 0.023 mmol) in xylene (3.0 mL × 50) and, after vacuum drying, it was placed in xylene (3.0 mL) and heated at 135 °C for 12 h. Finally, it was rinsed with xylene (3.0 mL × 50) and dried under vacuum for 10 min to give sulfur-modified Au-supported Pd material SAPd (100.8 mg, immobilized Pd: 57 ± 16 µg) and only this SAPd was used throughout this research.

Typical experimental procedure of microwave assisted flowing for Suzuki-Miyaura coupling using iodobenzene 1a catalyzed by SAPd;

To a reaction tube (suitable for microwave), iodobenzene (**1a**, 102.0 mg, 0.50 mmol), SAPd and EtOH (2.0 mL) were added and then the tube was fixed in the single-mode microwave chamber. The tube was irradiated in a single-mode microwave conditions, MW (S): temp: 80 °C, time: 60 min, power: 200 W and after completing the irradiation, the SAPd was removed from the tube, washed with xylene (6×3.0 mL) and kept for next cycle. The irradiated solution was transferred to reaction vessel, which was previously charged with 4-chlorophenylboronic acid (**2a**, 117.3 mg, 0.75 mmol) and K₂CO₃ (138.2 mg, 1.0 mmol). The SAPd containing tube was washed with EtOH (2×1 mL) and the washing solvents were also poured into the above reaction vessel. The resulting reaction vessel was then irradiated in

a multi-mode microwave conditions, MW (M): temp: 82 °C, time: 60 min, power: 500 W. The reaction mixture was then cooled to room temperature and was poured into water (10.0 mL) and the organic layer was extracted with AcOEt (3×20 mL). The combined organic extracts were washed with brine (3×25 mL) and dried over Na₂SO₄. Concentration at reduced pressure gave yellowish oil, which was chromatographed on silicagel with hexane–AcOEt (98:2 v/v) as eluent to give the 4-chlorobiphenyl (**3a**, 93.6 mg, 99%) as a white solid. The above reaction condition was maintained as for 2nd cycle and this procedure was repeated for a total 10 cycles.

Typical experimental procedure of microwave assisted flowing for Suzuki-Miyaura coupling using bromobenzene 1b catalyzed by SAPd;

To a reaction tube (suitable for microwave), bromobenzene (1b, 78.5 mg, 0.50 mmol), SAPd and DMF (2.0 mL) were added and then the tube was fixed in the single-mode microwave chamber. The tube was irradiated in a single-mode microwave conditions, MW (S): temp: 90 °C, time: 50 min, power: 300 W and after completing the irradiation, the SAPd was removed from the tube, washed with xylene (6 \times 3.0 mL) and kept for next cycle. The irradiated solution was transferred to reaction vessel, which was previously charged with 4-chlorophenylboronic acid (2a, 117.3 mg, 0.75 mmol) and K₂CO₃ (138.2 mg, 1.0 mmol). The SAPd containing tube was washed with toluene $(2 \times 1 \text{ mL})$ and the washing solvents along with H₂O (1.0 mL) were poured into the above reaction vessel. The resulting reaction vessel was then irradiated in a multi-mode microwave conditions, MW (M): temp: 104 °C, time: 60 min, power: 500 W. The reaction mixture was then cooled to room temperature and was poured into water (10.0 mL) and the organic layer was extracted with AcOEt (3×20.0 mL). The combined organic extracts were washed with brine $(3 \times 25.0 \text{ mL})$ and dried over Na₂SO₄. Concentration at reduced pressure gave yellowish oil, which was chromatographed on silicagel with hexane-AcOEt (98:2 v/v) as eluent to give the 4-chlorobiphenyl (3a, 93.8 mg, 99%) as a white solid. The above reaction condition was maintained as for 2nd cycle and this procedure was repeated for a total 10 cycles.

Amount of leached-Pd (ng) in the reaction mixtures ^{c, d, e}										Pd on SAPd		
											(µg)	
Reactions	1^{st}	2^{nd}	3 rd	4^{th}	5^{th}	6^{th}	$7^{\rm th}$	8^{th}	9^{th}	10^{th}	Before	After
											use	use
1a + 2a	$170 \pm$	$144 \pm$	$107 \pm$	$120 \pm$	$103 \pm$	$65 \pm$	$86 \pm$	$58 \pm$	$56 \pm$	$62 \pm$	81	93
	181	143	84	113	53	23	62	22	24	26	± 27	± 30
	(0.05)	(0.04)	(0.03)	(0.03)	(0.03)	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)		
1b + 2a	$487 \pm$	1016±	1321±	$667 \pm$	$862 \pm$	1010±	723±	711±	533±	360±	81	49
	153	821	970	274	445	709	496	602	367	204	± 23	± 13
	(0.11)	(0.22)	(0.29)	(0.15)	(0.19)	(0.22)	(0.16)	(0.16)	(0.12)	(0.08)		

Table S1. Amount of Pd in the reaction mixtures of **1a** with $2a^{a}$, **1b** with $2a^{b}$ and on SAPd itself

^{*a*} Reaction conditions: **1a** (0.50 mmol), **2a** (0.75 mmol), K₂CO₃ (1.00 mmol), single-mode microwave settings, MW (S): solvent: EtOH (2.0 mL), temp: 80 °C, time: 60 min, power: 200 W; multi-mode microwave settings, MW (M): solvent: EtOH (2.0 mL), temp: 82 °C, time: 60 min, power: 500 W. ^{*b*} **1b** (0.50 mmol), **2a** (0.75 mmol), K₂CO₃ (1.00 mmol), single-mode microwave settings, MW (S): solvent: DMF (2.0 mL), temp: 90 °C, time: 50 min, power: 300 W; multi-mode microwave settings, MW (M): solvent: toluene/H₂O (3:1, 2.0 mL), temp: 104 °C, time: 60 min, power: 500 W. ^{*c*} The entire reaction mixture was acidified and subjected directly to ICP-MS measurement. ^{*d*} The standard deviation was calculated from 4 sets of samples. ^{*e*} Numbers in parentheses indicate the amount of leached Pd in ppm.

٨٣	SAPd, solve	nt (2 mL)	tion		(HO) ₂ B	–Ar′	2a-	-2c			• ′	
Al-) Solu	ιοπ <u>–</u> K ₂	CO ₃ , s	olven	t (2 mL	.) + M	W (S) solv	ent	Aı	r—Ar	
1c	-1j		MW (M)									3b-3h	
Entry		Ar'-B(OH) ₂		Yields of $3(\%)^b$									Average
-	Ar-X	Ar'	1^{st}	2 nd	3 rd	4 th	5 th	6 th	7 th	8 th	9 th	10^{th}	yields %)
1	A-MeOC, H, Br	4-ClC2H4	98	99	98	99	98	97	98	98	97	98	98
1	(1 c)	(2 9)	70))	70	"	70)1	70	70)1	70	70
2	(\mathbf{IC}) 4-MeC ₆ H ₄ Br	(2a) 4-ClC ₆ H ₄	95	93	95	94	93	95	95	95	93	94	94
	(1d)	(2a)											
3	$4-NO_2C_6H_4Br$	$4-ClC_6H_4$	98	99	99	>99	98	98	99	99	99	98	99
	(1e)	(2a)											
4	4-CNC ₆ H ₄ Br	$4-ClC_6H_4$	99	>99	98	99	97	98	99	99	98	99	99
	(1f)	(2a)											
5	C_6H_5Br	C_6H_5	97	98	97	97	96	97	93	95	94	95	96
	(1b)	(2b)											
6	C_6H_5Br	$4-MeC_6H_4$	99	98	96	98	94	98	96	99	98	97	98
	(1b)	(2c)											
7	4-MeOC ₆ H ₄ I	$4-ClC_6H_4$	97	98	98	97	96	96	97	97	98	97	97
	(1g)	(2a)											
8	$2-MeC_6H_4I$	$4-ClC_6H_4$	96	95	95	97	95	96	95	95	95	95	95
	(1h)	(2a)											
9	$4-AcC_6H_4I$	$4-ClC_6H_4$	>99	>99	98	99	99	98	99	97	98	99	99
	(1i)	(2a)											
10	$4-NO_2C_6H_4I$	$4-ClC_6H_4$	99	>99	99	95	98	98	99	99	98	99	99
	(1j)	(2a)											
11	C_6H_5I	C_6H_5	95	95	96	96	96	95	96	96	95	95	96
	(1a)	(2b)											
12	C ₆ H ₅ I	$4-\text{MeC}_6\text{H}_4$	96	97	96	96	96	95	96	94	95	96	96
	(1a)	(2c)											

Table S2. Suzuki-Miyaura cross-coupling reactions of various substrates using SAPd^a

^{*a*} Reaction conditions for arylbromides: arylbromides (0.50 mmol), boronic acids (0.75 mmol), K_2CO_3 (1 mmol), single-mode microwave settings, MW (S): solvent: DMF (2.0 mL), temp: 90 °C, time: 50 min, power: 300 W, multi-mode microwave settings, MW (M): solvent: toluene/H₂O (3:1, 2 mL), temp: 102 °C, time: 60 min, power: 500 W; Reaction conditions for aryliodides: aryliodides (0.50 mmol), boronic acids (0.75 mmol), K_2CO_3 (1 mmol),

single-mode microwave settings, MW (S): solvent: EtOH (2.0 mL), temp: 80 °C, time: 60 min, power: 200 W, multi-mode microwave settings, MW (M): solvent: EtOH (2.0 mL), temp: 82 °C, time: 60 min, power: 500 W. ^{*b*} The isolated yields.

4-Chlorobiphenyl (3a)^{1, 2}

From arylbromide method: average yield: 99%.

From aryliodide method: average yield: 99%.

White solid; mp 78-78.5 °C (MeOH) (lit.² 78.5 °C, benzene). ¹H-NMR (500 MHz, CDCl₃): δ 7.54 (2H, d, J = 7.5 Hz), 7.51 (2H, d, J = 7.5 Hz), 7.45–7.39 (4H, m), 7.37–7.34 (1H, m); ¹³C–NMR (125 MHz, CDCl₃): δ 139.94, 139.62, 133.33, 128.88, 128.86, 128.36, 127.56, 126.95; LRMS (EI) *m*/*z* 188 (100%, M⁺).

4-Chloro-4'-methoxybiphenyl (3b)^{1,2}

From arylbromide method: By following the same procedure described for **3a**, biaryl **3b** was prepared from 4-bromoanisole (**1c**) and 4-chlorophenylboronic acid (**2a**): average yield: 98%. From aryliodide method: By following the same procedure described for **3a**, biaryl **3b** was prepared from 4-iodoanisole (**1g**) and 4-chlorophenylboronic acid (**2a**): average yield: 97%. White solid; mp 115-115.5 °C (lit.² 116 °C, EtOH). ¹H-NMR (500 MHz, CDCl₃): δ 7.46 (4H, t, *J* = 8.5 Hz), 6.96 (2H, d, *J* = 8.5 Hz), 3.83 (3H, s); ¹³C–NMR (100 MHz, CDCl₃): δ 159.32, 139.22, 132.62, 132.43, 128.80, 127.97, 127.90, 114.27, 55.32; LRMS (EI) *m/z* 218 (100%, M⁺).

4-Chloro-4'-methylbiphenyl (3c)^{3,4}

By following the same procedure described for **3a**, biaryl **3c** was prepared from 4-bromotoluene (**1d**) and 4-chlorophenylboronic acid (**2a**): average yield: 94%.

White solid. mp 122-122.5 °C (lit. ⁴ 122 °C). ¹H-NMR (500 MHz, CDCl₃): δ 7.49 (2H, d, J = 8.2 Hz), 7.44 (2H, d, J = 8.2 Hz), 7.38 (2H, d, J = 8.4 Hz), 7.24 (2H, d, J = 8.0 Hz), 2.39 (3H, s); ¹³C–NMR (125 MHz, CDCl₃): δ 139.55, 137.42, 137.07, 132.99, 129.58, 129.02, 128.82, 128.20, 126.79, 21.10; LRMS (EI) *m*/*z* 202 (90%, M⁺).

4-Chloro-4'-nitrobiphenyl (3d)^{2,5}

From arylbromide method: By following the same procedure described for **3a**, biaryl **3d** was prepared from 4-bromonitrobenzene (**1e**) and 4-chlorophenylboronic acid (**2a**): average yield: 99%.

From aryliodide method: By following the same procedure described for **3a**, biaryl **3d** was prepared from 4-iodonitrobenzene (**1j**) and 4-chlorophenylboronic acid (**2a**): average yield: 99%.

Pale yellow solid. mp 145.5-146 °C (lit. ² 146 °C, EtOH). ¹H-NMR (400 MHz, CDCl₃): δ 8.29 (2H, d, J = 8.4 Hz), 7.70 (2H, d, J = 8.4 Hz), 7.56 (2H, d, J = 8.4 Hz), 7.46 (2H, t, J = 8.4 Hz); ¹³C–NMR (100 MHz, CDCl₃): δ 147.14, 146.22, 137.10, 135.17, 129.31, 128.57, 127.60, 124.15; LRMS (EI) *m/z* 233 (100%, M⁺).

4'-Chlorobiphenyl-4-carbonitrile (3e)^{6,7}

By following the same procedure described for **3a**, biaryl **3e** was prepared from 4-bromobenzonitrile (**1f**) and 4-chlorophenylboronic acid (**2a**): average yield: 99%.

White solid. mp 125-126 °C (lit. ⁷ 124-126 °C). ¹H-NMR (400 MHz, CDCl₃): δ 7.72 (2H, d, J = 8.0 Hz), 7.64 (2H, d, J = 7.6 Hz), 7.52 (2H, d, J = 8.4 Hz), 7.44 (2H, d, J = 8.4 Hz); ¹³C–NMR (100 MHz, CDCl₃): δ 144.24, 137.46, 134.84, 132.60, 129.22, 128.39, 127.47, 118.69, 111.14; LRMS (EI) *m*/*z* 213 (100%, M⁺).

Biphenyl (3f)^{1,8}

From arylbromide method: By following the same procedure described for **3a**, biaryl **3f** was prepared from bromobenzene (**1b**) and phenylboronic acid (**2b**): average yield: 96%.

From aryliodide method: By following the same procedure described for **3a**, biaryl **3f** was prepared from iodobenzene (**1a**) and phenylboronic acid (**2b**): average yield: 96%.

White solid. mp 70.0-70.5 °C (lit. ⁸ 70-71 °C, MeOH). ¹H-NMR (400 MHz, CDCl₃): δ 7.59 (4H, d, J = 7.6 Hz), 7.43 (4H, t, J = 7.6 Hz), 7.35–7.31(2H, m); ¹³C–NMR (100 MHz, CDCl₃): δ 141.20, 128.73, 127.22, 127.14; LRMS (EI) *m*/*z* 154 (100%, M⁺).

4-Methylbiphenyl (3g)^{1,9}

From arylbromide method: By following the same procedure described for **3a**, biaryl **3g** was prepared from bromobenzene (**1b**) and 4-methylphenylboronic acid (**2c**): average yield: 98%. From aryliodide method: By following the same procedure described for **3a**, biaryl **3g** was prepared from iodobenzene (**1a**) and 4-methylphenylboronic acid (**2c**): average yield: 96%. White solid. mp 48.5-49 °C (lit. ⁹ 49-50 °C, EtOH). ¹H-NMR (500 MHz, CDCl₃): δ 7.58 (2H, d, *J* = 8.6 Hz), 7.49 (2H, d, *J* = 8.0 Hz), 7.44–7.41(2H, m), 7.33–7.31(1H, m), 7.26–7.24 (2H, m), 2.39 (1H, s); ¹³C–NMR (125 MHz, CDCl₃): δ 141.14, 138.33, 137.01, 129.46, 128.70, 126.98, 126.96, 21.10; LRMS (EI) *m/z* 168 (100%, M⁺).

4'-chloro-2-methylbiphenyl (3h)¹⁰

By following the same procedure described for **3a**, biaryl **3h** was prepared from *o*-iodotoluene (**1h**) and 4-chlorophenylboronic acid (**2a**): average yield: 95%.

Light yellow oil. ¹H-NMR (500 MHz, CDCl₃): δ 7.36 (2H, d, J = 8.5 Hz), 7.25–7.20 (5H, m), 7.17 (1H, d, J = 7.0 Hz), 2.24 (3H, s); ¹³C–NMR (125 MHz, CDCl₃): δ 140.61, 140.30, 135.21, 132.78, 130.48, 130.40, 129.62, 128.23, 127.55, 125.86, 20.37; LRMS (EI) *m/z* 202 (100%, M⁺).

1-(4'-Chlorobiphenyl-4-yl)ethanone (3i)^{3,11}

By following the same procedure described for **3a**, biaryl **3i** was prepared from 4-acetyliodobenzene (**1i**) and 4-chlorophenylboronic acid (**2a**): average yield: 99%.

White solid. mp 104-104.5 °C (lit 103-104 °C, MeOH). ¹H-NMR (400 MHz, CDCl₃): δ 8.01 (2H, d, *J* = 8.4 Hz), 7.62 (2H, d, *J* = 8.0 Hz), 7.53 (2H, d, *J* = 8.8 Hz), 7.42 (2H, d, *J* = 8.4 Hz), 2.62 (3H, s); ¹³C–NMR (100 MHz, CDCl₃): δ 197.54, 14.31, 138.16, 135.97, 134.35, 129.06, 128.93, 128.42, 126.96, 26.61; LRMS (EI) *m*/*z* 230 (50%, M⁺).

References

1. Tsai, F. -Y.; Lin, B. -N.; Chen, M. -J.; Mou, C. -Y.; Liu, S. -T. *Tetrahedron* 2007, 63, 4304.

- 2. Migita, T.; Morikawa, N. Bull. Chem. Soc. Jpn. 1963, 36, 980.
- 3. Miguez, J. M. A.; Adrio, L. A.; Sousa-Pedrares, A.; Vila, J. M.; Hii, K. K. J. Org. Chem. 2007, 72, 7771.
- 4. Gomberg, M.; Pernert, J. C. J. Am. Chem. Soc. 1926, 48, 1381.
- 5. Dai, M.; Liang, B.; Wang, C.; Chen, J.; Yang, Z. Org. Lett. 2004, 6, 221.
- 6. Martin, R.; Buchwald, S. L. J. Am. Chem. Soc. 2007, 129, 3844.
- 7. Kaye, S.; Fox, J. M.; Hicks, F. A.; Buchwald, S. L.; Adv. Synth. Catal. 2001, 343, 789.
- 8. Tamura, Y.; Chun, M. -W.; Inoue, K.; Minamikawa, J. Synthesis 1978, 11, 822.
- 9. Rao, M. S. C.; Rao, G. S. K. Synthesis, 1987, 3, 231.
- 10. Denmark, S. E.; Smith, R. C.; Chang, W. –T. T. Muhuhi, J. M. J. Am. Chem. Soc. 2009, 131, 3104.
- 11. Byron, D. J.; Gray, G. W.; Wilson, R. C. J. Chem. Soc. C. 1966, 840.