SULFOXIDES AND SULFONES AS SOLVENTS FOR THE MANUFACTURE OF ALKYL POLYGLYCOSIDES WITHOUT ADDED CATALYST

Camille Ludot a,b, Boris Estrine a, Jean Le Bras *b, Norbert Hoffmann b, Sinisa Marinkovic a and Jacques Muzart b

a Agro-industrie Recherches et Développements, Green Chemistry Department, Route de Bazancourt, POMACLE, France. Fax: +33 (0)3 26 05 42 89; Tel: +33 (0)3 26 05 42 80; E-mail: s.marinkovic@a-r-d.fr

b Institut de Chimie Moléculaire de Reims, UMR 7312, CNRS-Université de Reims Champagne-Ardenne, UFR des Sciences Exactes et Naturelles, BP 1039, 51687 REIMS Cedex 2, France. Fax: +33 (0)3 26 91 31 66; Tel: +33 (0)3 26 91 32 46; E-mail: jean.lebras@univ-reims.fr

HPLIC analysis of organic acids:

Figure 1. HPLIC chromatogram of the thermal degradation of D-xylose in DMSO (a, lactic acid; b, acetic acid; c, formic acid)
Scheme 1: Gas Chromatography monitoring and pH monitoring of the thermal degradation of D-xylose in DMSO

![Diagram](attachment:image.png)

Recycling of DMSO:

![Bar chart](attachment:chart.png)

Figure 2. Successive xylosylation reactions in dimethylsulfone. Reaction conditions as described for Table 4
Effects of temperature and added catalyst on glycosidation reactions in sulfolane:

Figure 3. Yield of decyl-D-xylosides as a function of time

\[T = 150 \, ^\circ \text{C} (\bullet); \quad 125 \, ^\circ \text{C} (\square); \quad 90 \, ^\circ \text{C} (\triangle); \quad 90 \, ^\circ \text{C} \text{ in the presence of formic acid as catalyst (△).} \]

Reaction condition: D-xylose (0.033 mol), Sulfolane (6 mol. equivalent based on D-xylose), Decanol (9 mol. equivalent based on D-xylose), air atmosphere

Characterization of decyl-D-xylosides produced by glycosidation of D-xylose with decanol in sulfolane (Table 4, Entry 5):

Biodegradation

Figure 4. Evolution of the ultimate biodegradability of decyl D-xylosides over 30 days (■, NaOAc (standard); ●, decyl D-xylosides) (according to OCDE 301F standard)
Figure 5. Determination of the surface tension versus decyl D-xylosides concentration

Figure 6. Determination of the foam power of decyl D-xylosides following Ross Miles tests

Foam production versus time (50 °C) = 340 mL (stability at 20min = 77.9 %)

Wetting power following Draves tests: (25 °C) = 10 s ± 1 s

Figure 7. 1H RMN spectra (solvent (CD$_3$)$_2$CO)3

Figure 8. 13C RMN spectra (solvent (CD$_3$)$_2$CO)4