SUPPORTING INFORMATION

for manuscript:

An Efficient Cu(II)-bis(oxazoline)-Based Polymer Immobilised Ionic Liquid Phase Catalyst for Asymmetric Carbon-Carbon Bond Fomation

Simon Doherty, Julian G. Knight, Jack R. Ellison, Peter Goodrich, Leanne Hall, Christopher Hardacre, Mark J. Muldoon, Soomin Park, Ana Ribeiro, Carlos Nieto de Castro, Maria José Lourenço and Paul Davey

General Information

Dichloromethane was distilled from calcium hydride under a nitrogen atmosphere. Toluene was distilled from potassium under nitrogen. Diethyl ether was distilled from benzophenone ketyl under nitrogen. NMR experiments were recorded on a Bruker Avance 300 MHz NMR spectrometer using CDCl₃ as the solvent. ¹H ¹³C NMR and 19F spectra were conducted at 300, 75 and 282MHz respectively. For SEM examination, samples were mounted upon aluminium stubs with carbon tape and analysed using a FEI Quanta 250 FEG SEM at 20kV. The non-ionic sample (P-7) was coated with Au in order to prevent charging before being mounted on carbon tape. ATR IR spectra were recorded using a Perkin Elmer 100 with a horizontal plate containing a ZnSe crystal. The spectra was recorded with a wavenumber resolution of 4 cm⁻¹ following 16 scans accumulated for a single spectrum. The working temperature was 25 °C. HPLC analysis was conducted using an Agilent 1100 equipped with an UV Diode Array detector.

Contents

Figure S1 ¹ H NMR spectrum of 1-(4-vinylbenzyl)pyrrolidine (8)	5
Figure S2 ¹³ C NMR spectrum of 1-(4-vinylbenzyl)pyrrolidine (8)	5
Figure S3 ¹ H NMR spectrum of 1-benzyl-1-(4-vinylbenzyl)pyrrolidinium bromide (9.Br)	6
Figure S4 ¹³ C NMR spectrum of 1-benzyl-1-(4-vinylbenzyl)pyrrolidinium bromide (9.Br)	6
Figure S5 ¹ H NMR spectrum of 1-benzyl-1-(4-vinylbenzyl)pyrrolidinium bistriflimide (9.NTf ₂)	7
Figure S6 ¹³ C NMR spectrum of 1-venzyl-1-(4-vinylbenzyl)pyrrolidinium bistrifimide (9.NTf ₂)	7
Figure S7 ¹⁹ F NMR spectrum of 1-venzyl-1-(4-vinylbenzyl)pyrrolidinium bistrifimide (9.NTf ₂)	8
Figure S8 ¹ H NMR spectrum of 1,1-vis(4-vinylbenzyl)pyrrolidin-1-ium bromide (10.Br)	8
Figure S9 ¹³ C NMR spectrum of 1,1-vis(4-vinylbenzyl)pyrrolidin-1-ium bromide (10.Br)	9
Figure S10 ¹ H NMR spectrum of 1,1-vis(4-vinylbenzyl)pyrrolidin-1-ium bistriflimide (10.NTf ₂)	9
Figure S11 ¹³ C NMR spectrum of 1,1-vis(4-vinylbenzyl)pyrrolidin-1-ium bistriflimide (10.NTf ₂)	10
Figure S12 ¹⁹ C NMR spectrum of 1,1-vis(4-vinylbenzyl)pyrrolidin-1-ium bistriflimide (10.NTf ₂)	10
Figure S13: TGA of in house synthesised IP-1	11
Figure S14: TGA of in house synthesised IP-2	11
Figure S15: TGA of in house synthesised IP-3	12
Figure S16: TGA of in house synthesised IP-4	12
Figure S17: TGA of commercial polymer IP-5	13
Figure S18: TGA of commercial polymer IP-6	13
Figure S19: TGA of non-ionic polystyrene P-7	14
Figure S20: SEM of in house synthesised IP-1	15
Figure S21: SEM of in house synthesised IP-2	16
Figure S22: SEM of in house synthesised IP-3	17
Figure S23: SEM of in house synthesised IP-4	18
Figure S24: SEM of commercial polymer IP-5	19
Figure S25: SEM of commercial polymer IP-6	20
Figure S26: SEM of non-ionic polystyrene P-7	21

Figure S27: ATR-IR of in house synthesised IP -1	22
Figure S28: ATR-IR of in house synthesised IP -2	22
Figure S29: ATR-IR of in house synthesised IP -3	23
Figure S30: ATR-IR of in house synthesised IP -4	23
Figure S31: ATR-IR of commercial polymer IP -5	24
Figure S32: ATR-IR of commercial polymer IP -6	24
Figure S33: ATR-IR of commercial polymer P -7	25
Figure S34: ATR-IR of in house synthesised IP-1, IP-1 + catalyst A and IP-1 + catalyst A after DA reaction	25

Figure S35: HPLC traces of the exo and endo-cycloadducts observed from a racemic reaction mixture and thatobtained from a reaction using IP-4 catalyst A complex26

Figure S36: HPLC traces of the aldol adducts observed from a racemic reaction mixture and that obtained from a reaction using IP-2 catalyst A complex 27

Figure S2 ¹³C NMR spectrum of 1-(4-vinylbenzyl)pyrrolidine (8)

Figure S3 ¹H NMR spectrum of 1-benzyl-1-(4-vinylbenzyl)pyrrolidinium bromide (9.Br)

Figure S4 ¹³C NMR spectrum of 1-benzyl-1-(4-vinylbenzyl)pyrrolidinium bromide (9.Br)

Figure S5 ¹H NMR spectrum of 1-benzyl-1-(4-vinylbenzyl)pyrrolidinium bistriflimide (9.NTf₂)

Figure S6¹³C NMR spectrum of 1-venzyl-1-(4-vinylbenzyl)pyrrolidinium bistrifimide (9.NTf₂)

Figure S7 ¹⁹F NMR spectrum of 1-venzyl-1-(4-vinylbenzyl)pyrrolidinium bistrifimide (9.NTf₂)

Figure S8 ¹H NMR spectrum of 1,1-vis(4-vinylbenzyl)pyrrolidin-1-ium bromide (10.Br)

Figure S9¹³C NMR spectrum of 1,1-vis(4-vinylbenzyl)pyrrolidin-1-ium bromide (10.Br)

Figure S10 ¹H NMR spectrum of 1,1-vis(4-vinylbenzyl)pyrrolidin-1-ium bistriflimide (10.NTf₂)

Figure S11¹³C NMR spectrum of 1,1-vis(4-vinylbenzyl)pyrrolidin-1-ium bistriflimide (10.NTf₂)

Figure S12¹⁹C NMR spectrum of 1,1-vis(4-vinylbenzyl)pyrrolidin-1-ium bistriflimide (10.NTf₂)

Figure S14: TGA of in house synthesised IP-2

Figure S16: TGA of in house synthesised IP-4

Figure S18: TGA of commercial polymer IP-6

Figure S20: SEM of in house synthesised IP-1

Figure S21: SEM of inhouse synthesised IP-2

Figure S22: SEM of inhouse synthesised IP-3

Figure S23: SEM of inhouse synthesised IP-4

Figure S24: SEM of inhouse synthesised IP-5

WD HV mag □ HFW pressure 11/18/2013 8.7 mm 20.00 kV 500 x 597 µm 1.13e-5 Torr 4:14:17 PM pressure 11/18/2013 9.90e-6 Torr 4:16:35 PM HV 20.00 k\ - 200 µm QFE381 WD FW - 40 µm QFE38 8.8 m WD HV mag - HFW pressure 11/18/2013 8.8 mm 20.00 kV 25 000 x 11.9 µm 7.91e-6 Torr 4:20:48 PM — 3 µm – QFE381

Figure S25: SEM of inhouse synthesised IP-6

Figure S26: SEM of P-7 Au coated

Figure S27: IR of in house synthesised IP -1

Figure S28: IR of in house synthesised IP -2

Figure S29: IR of in house synthesised IP -3

Figure S30: IR of in house synthesised IP -4

Figure S31: IR of commercial polymer IP -5

Figure S32: IR of commercial polymer IP -6

Figure S33: IR of commercial polymer P -7

Figure S34: IR of in house synthesised IP-1 (top), IP-1 + catalyst A (middle) and IP-1 + catalyst A (bottom) after a Diels-Alder reaction

Figure S35: HPLC traces of the exo and endo-cycloadducts observed from a racemic reaction mixture and that obtained from a reaction using IP-4 catalyst A complex

Figure S36: HPLC traces of the aldol adducts observed from a racemic reaction mixture and that obtained from a reaction using IP-4 catalyst A complex

