Supporting information for

Iodine-catalyzed Efficient 2-Arylsulfanylphenol Formation from Thiols and Cyclohexanones

Yunfeng Liao, Pengcheng Jiang, Shanping Chen, Hongrui Qi, Guo-Jun Deng

a Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China; e-mail:gjdeng@xtu.edu.cn;
b School of Chemistry & Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China.

Table of Contents

1. General information 2
2. General procedure for 2
3. Characterization data of products 2-11
4. References 12
5. Copies of 1H and 13C NMR spectra of all products 13-32
General information:

All reactions were carried out under an atmosphere of oxygen unless otherwise noted. Column chromatography was performed using silica gel (200-300 mesh). 1H NMR and 13C NMR spectra were recorded on Bruker-AV (400 and 100 MHz, respectively) instrument internally referenced to tetramethylsilane (TMS) or chloroform signals. Mass spectra was measured on Agilent 5975 GC-MS instrument (EI). Infrared spectra was measured on Nicolet 6700 FT-IR. High-resolution mass spectra were recorded at Institute of Chemistry, Chinese Academy of Sciences. The structure of known compounds were further corroborated by comparing their 1H NMR, 13C NMR data and MS data with those of literature. All reagents were obtained from commercial suppliers and used without further purification.

General procedure (3a):

4-Methylbenzenethiol ($2a$, 62 mg, 0.5 mmol) and iodine (25.4 mg, 0.1 mmol) were added to a 25 mL oven-dried reaction vessel. The reaction vessel was purged with oxygen for three times and was added cyclohexanone ($1a$, 103.6 μL, 1.0 mmol) and NMP (2.0 mL) by syringe. The reaction vessel with an oxygen balloon was stirred at 160 °C for 20 h. After cooling to room temperature, the volatiles were removed under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 100:1) to yield the desired product $3a$ as pale yellow liquid (81 mg, 75% yield).

2-$(p$-Tolylthio)phenol ($3a$, CAS: 59010-83-2)$^{[1]}$

![Chemical structure](image)

1H NMR (400 MHz, CDCl$_3$, ppm) δ 7.51 (d, $J = 7.6$ Hz, 1H), 7.35 (t, $J = 6.8$ Hz, 1H), 7.06-7.00 (m, 5H), 6.93 (t, $J = 7.2$ Hz, 1H), 6.53 (s, 1H), 2.28 (s, 3H); 13C NMR (100 MHz, CDCl$_3$, ppm) δ 157.1, 136.6, 136.3, 132.1, 132.0, 130.0, 127.5, 121.2, 117.2, 115.4, 20.9; MS (EI) m/z (%) 216(100), 201, 183, 96, 91.

4-Methyl-2-$(p$-tolylthio)phenol ($3b$)
The reaction was conducted with 4-methylbenzenethiol (2a, 62 mg, 0.5 mmol) and 4-methylcyclohexanone (1b, 122.5 μL, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 100:1) afforded the product 3b as pale yellow liquid (80.5 mg, 70%).

\[\text{1H NMR (400 MHz, CDCl}_3, \text{ ppm) } \delta 7.32 \text{ (s, 1H), 7.14 (d, } J = 7.2 \text{ Hz, 1H), 7.06-7.00 (m, 4H), 6.94 (d, } J = 8.0 \text{ Hz, 1H), 6.35 \text{ (s, 1H), 2.28 (s, 3H), 2.27 (s, 3H); 13C NMR (100 MHz, CDCl}_3, \text{ ppm) } \delta 154.8, 136.6, 136.1, 132.7, 132.3, 130.5, 129.9, 127.4, 116.6, 115.1, 20.9, 20.3; \text{ IR (neat, cm}^{-1} \text{) 3425, 3022, 2920, 2863, 1485, 1175; Anal. Calcd for C}_{14}\text{H}_{14}\text{OS: C, 73.01; H, 6.13; S, 13.92. found: C, 73.36; H, 6.29; S, 14.22. HRMS (ESI, m/z): calcd. for C}_{14}\text{H}_{13}\text{OS [M-H]}^\text{-} 229.0682, \text{ found 229.0682.} \]

4-Ethyl-2-((p-tolylthio)phenol (3c)

The reaction was conducted with 4-methylbenzenethiol (2a, 62 mg, 0.5 mmol) and 4-ethylcyclohexanone (1c, 141 μL, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 100:1) afforded the product 3c as pale yellow liquid (87.8 mg, 72%).

\[\text{1H NMR (400 MHz, CDCl}_3, \text{ ppm) } \delta 7.34 \text{ (s, 1H), 7.18 (d, } J = 6.8 \text{ Hz, 1H), 7.06-6.96 (m, 5H), 6.35 \text{ (s, 1H), 2.58 (q, } J = 7.6 \text{ Hz, 2H) 2.28 (s, 3H), 1.20 (t, } J = 7.4 \text{ Hz, 3H); 13C NMR (100 MHz, CDCl}_3, \text{ ppm) } \delta 155.1, 137.0, 136.1, 135.5, 132.4, 131.5, 130.0, 127.4, 116.7, 115.2, 27.8, 20.9, 15.6; \text{ MS (EI) m/z (%) 244(100), 229, 211, 124, 91.} \]

4-Pentyl-2-((p-tolylthio)phenol (3d)
The reaction was conducted with 4-methylbenzenethiol (2a, 62 mg, 0.5 mmol) and 4-pentylcyclohexanone (1d, 190 μL, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 100:1) afforded the product 3d as pale yellow liquid (107.3 mg, 75%).

\[\text{The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 100:1) afforded the product 3d as pale yellow liquid (107.3 mg, 75%).} \]

\[\text{H NMR (400 MHz, CDCl} \text{3, ppm) } \delta 7.32 \text{ (s, 1H), 7.16 (d, } J = 8.0 \text{ Hz, 1H), 7.06-6.95 (m, 5H), 6.35 \text{ (s, 1H), 2.52 (t, } J = 7.6 \text{ Hz, 2H), 2.28 (s, 3H), 1.61-1.59 (m, 2H), 1.33-1.30 (m, 4H), 0.88 (t, } J = 6.6 \text{ Hz, 3H); } ^{13}\text{C NMR (100 MHz, CDCl} \text{3, ppm) } \delta 155.1, 136.1, 136.1, 135.7, 132.5, 132.0, 130.0, 127.4, 116.6, 115.2, 34.8, 31.4, 31.2, 22.5, 20.9, 14.0; \text{ IR (neat, cm}^{-1}) 3430, 3022, 2955, 2925, 2855, 1485, 1174; \text{ Anal. Calcd for C}_{18}\text{H}_{22}\text{OS: C, 75.48; H, 7.74; S, 11.19. found: C, 75.20; H, 7.96; S, 11.34. HRMS (ESI, m/z): calcd. for C}_{18}\text{H}_{21}\text{OS } [\text{M-H}^-] 285.1308, \text{ found 285.1310.} \]

4-(tert-Pentyl)-2-(p-tolylthio)phenol (3e)

\[\text{The reaction was conducted with 4-methylbenzenethiol (2a, 62 mg, 0.5 mmol) and 4-(tert-pentyl)cyclohexanone (1e, 183 μL, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 100:1) afforded the product 3e as pale yellow liquid (101.5 mg, 71%).} \]

\[\text{H NMR (400 MHz, CDCl} \text{3, ppm) } \delta 7.45 \text{ (s, 1H), 7.32 (d, } J = 8.4 \text{ Hz, 1H), 7.05 (d, } J = 8.0 \text{ Hz, 2H), 7.00-6.96 (m, 3H), 6.33 \text{ (s, 1H), 2.28 (s, 3H), 1.63-1.59 (m, 2H), 1.25 (s, 6H), 0.67 (t, } J = 7.4 \text{ Hz, 3H); } ^{13}\text{C NMR (100 MHz, CDCl} \text{3, ppm) } \delta 154.8, 142.4, 136.0, 134.2, 132.6, 129.9, 129.8, 127.0, 116.0, 114.9, 37.4, 36.9, 28.5, 20.8, 9.06; \text{ IR (neat, cm}^{-1}) 3431, 2962, 2920, 2873, 1484, 1183; \text{ Anal. Calcd for C}_{18}\text{H}_{22}\text{OS: C, 75.48; H, 7.74; S, 11.19. found: C, 75.76; H, 7.92; S, 11.29. HRMS (ESI, m/z): calcd. for C}_{18}\text{H}_{21}\text{OS } [\text{M-H}^-] 285.1308, \text{ found 285.1310.} \]

3-(p-Tolylthio)-[1,1'-biphenyl]-4-ol (3f)

\[\text{The reaction was conducted with 4-methylbenzenethiol (2a, 62 mg, 0.5 mmol) and 4-pentylcyclohexanone (1f, 190 μL, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 100:1) afforded the product 3f as pale yellow liquid (107.3 mg, 75%).} \]

\[\text{H NMR (400 MHz, CDCl} \text{3, ppm) } \delta 7.32 \text{ (s, 1H), 7.16 (d, } J = 8.0 \text{ Hz, 1H), 7.06-6.95 (m, 5H), 6.35 \text{ (s, 1H), 2.52 (t, } J = 7.6 \text{ Hz, 2H), 2.28 (s, 3H), 1.61-1.59 (m, 2H), 1.33-1.30 (m, 4H), 0.88 (t, } J = 6.6 \text{ Hz, 3H); } ^{13}\text{C NMR (100 MHz, CDCl} \text{3, ppm) } \delta 155.1, 136.1, 136.1, 135.7, 132.5, 132.0, 130.0, 127.4, 116.6, 115.2, 34.8, 31.4, 31.2, 22.5, 20.9, 14.0; \text{ IR (neat, cm}^{-1}) 3430, 3022, 2955, 2925, 2855, 1485, 1174; \text{ Anal. Calcd for C}_{18}\text{H}_{22}\text{OS: C, 75.48; H, 7.74; S, 11.19. found: C, 75.76; H, 7.92; S, 11.29. HRMS (ESI, m/z): calcd. for C}_{18}\text{H}_{21}\text{OS } [\text{M-H}^-] 285.1308, \text{ found 285.1310.} \]
The reaction was conducted with 4-methylbenzenethiol (2a, 62 mg, 0.5 mmol) and 4-phenylcyclohexanone (1f, 174 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 100:1) afforded the product 3f as pale yellow liquid (116.8 mg, 80%).

\[
\begin{align*}
1^1\text{H NMR (400 MHz, CDCl}_3, \text{ppm) } & \delta 7.78 (s, 1H), 7.60-7.53 (m, 3H), 7.41 (d, J = 7.6 Hz, 2H), 7.31 (t, J = 7.2 Hz, 1H), 7.13-7.06 (m, 5H), 6.54 (s, 1H), 2.28 (s, 3H); \\
1^3\text{C NMR (100 MHz, CDCl}_3, \text{ppm) } & \delta 156.4, 139.8, 136.4, 134.9, 134.4, 131.9, 130.6, 130.0, 128.8, 127.6, 127.0, 126.6, 117.7, 115.8, 20.9; \\
\text{IR (neat, cm}^{-1}) & \text{ 3407, 3029, 2921, 2859, 1471, 1177;} \\
\text{Anal. Calcd for C}_{19}\text{H}_{15}\text{OS: } & \text{C, 78.5; H, 5.52; S, 10.97. found: C, 78.27; H, 5.70; S, 11.25. HRMS (ESI, m/z): calcd. for C}_{19}\text{H}_{15}\text{OS [M-H]}' 291.0838, \text{found 291.0840.}
\end{align*}
\]

\[\text{N-(4-hydroxy-3-(p-tolylthio)phenyl)acetamide (3g)}\]

\[
\begin{align*}
\text{The reaction was conducted with 4-methylbenzenethiol (2a, 62 mg, 0.5 mmol) and N-(4-oxocyclohexyl)acetamide (1g, 155 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2:1) afforded the product 3g as pale yellow solid (80.6 mg, 62%).} \\
\text{1^1\text{H NMR (400 MHz, CDCl}_3, \text{ppm) } & \delta 7.61 (s, 1H), 7.48 (d, J = 7.6 Hz, 1H), 7.16-6.99 (m, 6H), 6.41 (s, 1H), 2.28 (s, 3H), 2.14 (s, 3H); \\
\text{1^3\text{C NMR (100 MHz, CDCl}_3, \text{ppm) } & \delta 168.7, 153.7, 136.6, 131.6, 131.2, 130.0, 128.1, 127.9, 124.4, 118.0, 115.5, 24.0, 20.8; \\
\text{IR (neat, cm}^{-1}) & \text{ 3286, 3192, 3073, 2920, 2858, 1656, 1486, 1178;} \\
\text{Anal. Calcd for C}_{15}\text{H}_{15}\text{O}_2\text{NS: } & \text{C, 65.91; H, 5.53; N, 5.12; S, 11.73. found: C, 66.18; H, 5.76; N, 5.38; S, 12.01. HRMS (ESI, m/z): calcd. for C}_{15}\text{H}_{14}\text{O}_2\text{NS}
\end{align*}
\]
[M-H] 272.0740, found 272.0740.

Ethyl 4-hydroxy-3-(p-tolylthio)benzoate (3h)

The reaction was conducted with 4-methylbenzenethiol (2a, 62 mg, 0.5 mmol) and ethyl 4-oxocyclohexanecarboxylate (1h, 159.3 μL, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1) afforded the product 3h as white solid (87.8 mg, 61%).

1H NMR (400 MHz, CDCl$_3$, ppm) δ 8.26 (s, 1H), 8.04 (d, $J = 8.4$ Hz, 1H), 7.08-7.02 (m, 5H), 6.93 (s, 1H), 4.34 (q, $J = 7.0$ Hz, 2H), 2.29 (s, 3H), 1.37 (t, $J = 7.2$ Hz, 3H); 13C NMR (100 MHz, CDCl$_3$, ppm) δ 165.6, 160.7, 138.4, 136.8, 133.5, 131.2, 130.1, 128.0, 123.8, 118.0, 115.3, 60.9, 20.9, 14.3; IR (neat, cm$^{-1}$) 3361, 3038, 2978, 2932, 1681, 1261, 1272, 1112; Anal. Calcd for C$_{16}$H$_{15}$O$_3$S: C, 66.64; H, 5.59; S, 11.12. found: C, 66.39; H, 5.80; S, 11.49. HRMS (ESI, m/z): calcd. for C$_{16}$H$_{15}$O$_3$S [M-H] 287.0736, found 287.0739.

5-Methyl-2-(p-tolylthio)phenol (3i, CAS:1254831-65-6)$^{[1]}$

The reaction was conducted with 4-methylbenzenethiol (2a, 62 mg, 0.5 mmol) and 3-methylcyclohexanone (1i, 122.7 μL, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 200:1) afforded the product 3i as pale yellow liquid (77.0 mg, 67%).

1H NMR (400 MHz, CDCl$_3$, ppm) δ 7.39 (d, $J = 7.6$ Hz, 1H), 7.05-6.98 (m, 4H), 6.88 (s, 1H), 6.76 (d, $J = 7.6$ Hz, 1H), 6.46 (s, 1H), 2.35 (s, 3H), 2.27 (s, 3H); 13C NMR (100 MHz, CDCl$_3$, ppm) δ 157.0, 142.8, 136.4, 136.1, 132.7, 129.9, 127.2, 122.2, 116.0, 113.7, 21.5, 20.9; MS (EI) m/z (%) 230 (100), 215, 197, 110, 91.

2-Methyl-6-(p-tolylthio)phenol (3j)
The reaction was conducted with 4-methylbenzenethiol (2a, 62 mg, 0.5 mmol) and 2-methylcyclohexanone (1j, 121.7 μL, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 500:1) afforded the product 3j as pale yellow liquid (46.0 mg, 40%).

1H NMR (400 MHz, CDCl$_3$, ppm) δ 7.36 (d, $J = 7.6$ Hz, 1H), 7.02 (d, $J = 7.2$ Hz, 1H), 7.06-7.00 (m, 4H), 6.83 (t, $J = 7.6$ Hz, 1H), 6.65 (m, 1H), 2.29 (s, 3H), 2.28 (s, 3H); 13C NMR (100 MHz, CDCl$_3$, ppm) δ 157.0, 142.8, 136.4, 136.1, 132.7, 129.9, 127.2, 122.2, 116.0, 113.7, 21.5, 20.9; IR (neat, cm$^{-1}$) 3418, 3020, 2919, 2861, 1220, 1183; Anal. Calcd for C$_{14}$H$_{14}$OS: C, 73.01; H, 6.13; S, 13.92. found: C, 73.25; H, 6.35; S, 14.15. HRMS (ESI, m/z): calcd. for C$_{14}$H$_{13}$OS [M-H]$^-$ 229.0682, found 229.0681.

2-(o-Tolylthio)phenol (3k)$^{[1]}$

The reaction was conducted with 2-methylbenzenethiol (2b, 58.8 μL, 0.5 mmol) and cyclohexanone (1a, 103.6 μL, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 100:1) afforded the product 3k as white liquid (64.8 mg, 60%).

1H NMR (400 MHz, CDCl$_3$, ppm) δ 7.48 (d, $J = 7.2$ Hz, 1H), 7.38 (t, $J = 7.4$ Hz, 1H), 7.17 (d, $J = 7.2$ Hz, 1H), 7.09-6.95 (m, 4H), 6.66 (d, $J = 7.2$ Hz, 1H), 6.40 (s, 1H), 2.45 (s, 3H); 13C NMR (100 MHz, CDCl$_3$, ppm) δ 157.3, 136.8, 135.5, 134.9, 134.9, 132.1, 130.3, 126.8, 125.8, 125.8, 121.4, 115.5, 20.0; MS (EI) m/z (%): 216 (100), 201, 122, 96, 91.

2-(m-Tolylthio)phenol (3l)

The reaction was conducted with 3-methylbenzenethiol (2c, 59.4 μL, 0.5 mmol) and
cyclohexanone (1a, 103.6 μL, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 100:1) afforded the product 3l as white liquid (69.0 mg, 64%).

\(^1\)H NMR (400 MHz, CDCl\(_3\), ppm) \(\delta\) 7.53 (d, \(J = 7.6\) Hz, 1H), 7.37 (t, \(J = 7.6\) Hz, 1H), 7.14-7.06 (m, 2H), 6.97-6.86 (m, 4H), 6.52 (s, 1H), 2.27 (s, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\), ppm) \(\delta\) 157.2, 139.1, 136.8, 135.5, 132.2, 129.0, 127.6, 127.1, 124.0, 121.2, 116.5, 115.5, 21.3; IR (neat, cm\(^{-1}\)) 3419, 3055, 2920, 1592, 1573, 1469, 1185; Anal. Calcd for C\(_{13}\)H\(_{12}\)OS: C, 72.19; H, 5.59; S, 14.82. found: C, 72.06; H, 5.62; S, 15.01. HRMS (ESI, m/z): calcd. for C\(_{13}\)H\(_{11}\)OS [M-H]\(^{-}\) 215.0525, found 215.0525.

2-((4-Methoxyphenyl)thio)phenol (3m)\(^{[1]}\)

\[
\text{H}_{3}\text{CO} \quad \begin{array}{c}
\text{S} \\
\text{OH}
\end{array}
\]

The reaction was conducted with 4-methoxybenzenethiol (2d, 61.4 μL, 0.5 mmol) and cyclohexanone (1a, 103.6 μL, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1) afforded the product 3m as pale yellow liquid (60.3 mg, 52%).

\(^1\)H NMR (400 MHz, CDCl\(_3\), ppm) \(\delta\) 7.49 (d, \(J = 7.6\) Hz, 1H), 7.31 (t, \(J = 7.6\) Hz, 1H), 7.13 (d, \(J = 8.8\) Hz, 2H), 7.03 (d, \(J = 8.0\) Hz, 1H), 6.91 (t, \(J = 7.4\) Hz, 1H), 6.80 (d, \(J = 8.4\) Hz, 2H), 6.56 (s, 1H), 3.78 (s, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\), ppm) \(\delta\) 158.8, 156.7, 136.1, 131.6, 130.1, 126.0, 121.1, 118.5, 115.4, 114.9, 55.3; MS (EI) \(m/z\) (%) 232 (100), 217, 171, 108, 96.

N-(4-((2-hydroxyphenyl)thio)phenyl)acetamide (3n)

\[
\text{O} \quad \begin{array}{c}
\text{N} \\
\text{H}
\end{array}
\]

The reaction was conducted with N-(4-mercaptophenyl)acetamide (2e, 78.5 mg, 0.5 mmol) and cyclohexanone (1a, 103.6 μL, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2:1) afforded the product 3n as pale yellow solid (93.3 mg, 72%).

\(^1\)H NMR (400 MHz, CDCl\(_3\), ppm) \(\delta\) 7.50 (d, \(J = 7.6\) Hz, 1H), 7.39-7.34 (m, 3H), 7.08-7.04 (m,
3H), 6.94 (t, J = 7.4 Hz, 1H), 6.54 (s, 1H), 2.14 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 168.7, 157.0, 136.5, 136.4, 131.9, 130.8, 128.4, 121.2, 120.9, 117.3, 115.6, 24.3; IR (neat, cm⁻¹) 3245, 3174, 2929, 2873, 1652, 1492, 1155; Anal. Calcd for C₁₄H₁₃O₂NS: C, 64.84; H, 5.05; N, 5.40; S, 12.36. found: C, 65.05; H, 5.15; S, 12.68. HRMS (ESI, m/z): calcd. for C₁₄H₁₂O₂NS [M-H] - 258.0583, found 258.0584.

2-((4-Hydroxyphenyl)thio)phenol (3o, CAS: 17755-37-2) [3]

The reaction was conducted with 4-mercaptophenol (2f, 63 mg, 0.5 mmol) and cyclohexanone (1a, 103.6 μL, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5:1) afforded the product 3o as white solid (88.3 mg, 81%).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.49 (d, J = 7.6 Hz, 1H), 7.32 (t, J = 7.4 Hz, 1H), 7.09-7.02 (m, 3H), 6.91 (t, J = 7.4 Hz, 1H), 6.73 (t, J = 8.4 Hz, 2H), 6.56 (s, 1H), 5.02 (s, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 156.5, 154.8, 136.0, 131.6, 130.4, 126.1, 121.2, 118.6, 116.4, 115.4; MS (EI) m/z (%) 218 (100), 185, 157, 125, 94.

2-((4-Fluorophenyl)thio)phenol (3p)

The reaction was conducted with 4-fluorobenzenethiol (2g, 53.3 μL, 0.5 mmol) and cyclohexanone (1a, 103.6 μL, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 100:1) afforded the product 3p as pale yellow liquid (77.0 mg, 70%).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.52 (d, J = 8.0 Hz, 1H), 7.37 (t, J = 7.8 Hz, 1H), 7.12-7.05 (m, 3H), 6.97-6.93 (m, 3H), 6.49 (s, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 159.9 (d, J = 244.8 Hz), 157.0, 136.6, 132.3, 130.8 (d, J = 3.2 Hz), 129.2 (d, J = 8.0 Hz), 121.4, 117.0, 116.3 (d, J = 22.1 Hz), 115.6; IR (neat, cm⁻¹) 3414, 3067, 1588, 1487, 1224, 1155; Anal. Calcd for C₁₂H₉OF$:
C, 65.43; H, 4.12; S, 14.56. found: C, 65.27; H, 4.28; S, 14.80. HRMS (ESI, m/z): calcd. for C\textsubscript{12}H\textsubscript{8}OFS [M-H]- 219.0274, found 219.0273.

2-((4-Chlorophenyl)thio)phenol (3q, CAS: 59010-71-8)[1]

![2-((4-Chlorophenyl)thio)phenol](image)

The reaction was conducted with 4-chlorobenzenethiol (2h, 72.3 mg, 0.5 mmol) and cyclohexanone (1a, 103.6 μL, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 100:1) afforded the product 3q as pale yellow liquid (73.3 mg, 62%).

\(^1\)H NMR (400 MHz, CDCl\textsubscript{3}, ppm) \(\delta\) 7.51 (d, \(J = 7.6\) Hz, 1H), 7.39 (t, \(J = 7.8\) Hz, 1H), 7.20 (t, \(J = 6.8\) Hz, 2H), 7.09-6.95 (m, 4H), 6.43 (s, 1H); \(^1^3\)C NMR (100 MHz, CDCl\textsubscript{3}, ppm) \(\delta\) 157.2, 136.8, 134.5, 132.5, 132.2, 129.3, 128.2, 121.4, 116.1, 115.8; MS (EI) m/z (%) 236 (100), 220, 200, 168, 96.

2-((4-Bromophenyl)thio)phenol (3r, CAS: 1254831-59-8)[1]

![2-((4-Bromophenyl)thio)phenol](image)

The reaction was conducted with 4-bromobenzenethiol (2i, 94.5 mg, 0.5 mmol) and cyclohexanone (1a, 103.6 μL, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 100:1) afforded the product 3r as pale yellow liquid (99.4 mg, 71%).

\(^1\)H NMR (400 MHz, CDCl\textsubscript{3}, ppm) \(\delta\) 7.51 (d, \(J = 7.6\) Hz, 1H), 7.41-7.34 (m, 3H), 7.08 (d, \(J = 8.0\) Hz, 1H), 6.98-6.93 (m, 3H), 6.42 (s, 1H); \(^1^3\)C NMR (100 MHz, CDCl\textsubscript{3}, ppm) \(\delta\) 157.1, 136.8, 135.1, 132.5, 132.2, 130.5, 128.3, 121.4, 119.9, 115.7; MS (EI) m/z (%) 282, 280, 201, 168, 96 (100).

2-(Naphthalen-2-ylthio)phenol (3s)
The reaction was conducted with naphthalene-2-thiol (2j, 80.0 mg, 0.5 mmol) and cyclohexanone (1a, 103.6 μL, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 100:1) afforded the product 3s as pale yellow liquid (76.9 mg, 61%).

\[\text{1H NMR (400 MHz, CDCl}_3, \text{ ppm) } \delta \text{ 7.76-7.57 (m, 4H), 7.49-7.39 (m, 4H), 7.22 (d, } J = 8.4 \text{ Hz, 1H), 7.10 (d, } J = 8.0 \text{ Hz, 1H), 6.98 (t, } J = 7.4 \text{ Hz, 1H), 6.54 (s, 1H); }^{13}\text{C NMR (100 MHz, CDCl}_3, \text{ ppm) } \delta \text{ 157.3, 136.8, 133.7, 133.2, 133.2, 131.9, 128.9, 127.7, 127.1, 126.7, 125.8, 125.3, 125.2, 121.3, 116.5, 115.7; } \text{IR (neat, cm}^{-1}) \text{ 3417, 3052, 1623, 1573, 1468, 1186; Anal. Calcd for } C_{16}H_{13}OS: \text{ C, 76.16; H, 4.79; S, 12.71. found: C, 76.46; H, 5.10; S, 13.09. HRMS (ESI, m/z): calcd. for } C_{16}H_{12}OS [M-H]^- 251.0525, \text{ found 251.0527.} \]

2-(Cyclohexylthio)phenol (3t, CAS: 56484-57-2)

The reaction was conducted with cyclohexanethiol (2k, 61.2 μL, 0.5 mmol) and cyclohexanone (1a, 103.6 μL, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 100:1) afforded the product 3t as pale yellow liquid (52.0 mg, 50%).

\[\text{1H NMR (400 MHz, CDCl}_3, \text{ ppm) } \delta \text{ 7.44 (d, } J = 7.6 \text{ Hz, 1H), 7.29-7.25 (m, 1H), 6.99 (d, } J = 8.0 \text{ Hz, 1H), 6.88-6.84 (m, 2H), 2.81 (m, 1H), 1.94-1.91 (m, 2H), 1.76-1.74 (m, 2H), 1.38-1.17 (m, 6H); }^{13}\text{C NMR (100 MHz, CDCl}_3, \text{ ppm) } \delta \text{ 157.5, 136.9, 131.1, 120.4, 117.7, 114.5, 48.7, 33.6, 26.1, 25.5; MS (EI) m/z (\%) 208, 137, 126 (100), 97, 83.} \]
References

Copies of 1H and 13C NMR spectra of all products
3p

3p