Supplementary Information

Cu(OAc)$_2$-catalyzed remote benzylic C(sp3)–H oxyfunctionalization for C=O formation directed by the hindered para-hydroxyl group with ambient air as terminal oxidant under ligand- and additive-free conditions

Jian-An Jiang, Cheng Chen, Jian-Gang Huang, Hong-Wei Liu, Song Cao and Ya-Fei Ji*

School of Pharmacy, East China University of Science & Technology, Campus P. O. Box 363, 130 Meilong Road, Shanghai 200237, P. R. China.

Table of Contents

1. General Information ... S2
2. General Procedures and Characterization Data................................. S2
3. Reference.. S17
4. Copies of Spectra for All Compounds... S18
1. General Information

All solvents and reagents were purchased from commercial suppliers and used without further purification. All reactions were carried out in oven-dried glassware and monitored by thin layer chromatography (TLC, precoated silica gel plates containing HF₂₅₄). Reaction products were purified by silica gel chromatography (300–400 mesh). Melting points were determined using an open capillaries and uncorrected, NMR spectra were determined on Bruker AV400 in CDCl₃ or DMSO-d₆, with TMS as internal standard for ¹H NMR (400 MHz) and ¹³C NMR (100 MHz), respectively. HRMS were carried out on a QSTAR Pulsar I LC/TOF MS mass spectrometer or a Micromass GCTTM gas chromatograph-mass spectrometer.

2. General Procedures and Characterization Data of Compounds

2.1 Optimizing the reaction conditions (comprehensive experiments for Table 1 in the text).

Table S1. Copper(II)-catalyzed oxidation of 1aa to 2aa.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Cu(II) salt (n mol%)</th>
<th>Atmos.</th>
<th>T [°C]</th>
<th>Solvent</th>
<th>Yield [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CuCl₂(3)</td>
<td>O₂</td>
<td>25</td>
<td>MeOH</td>
<td>trace</td>
</tr>
<tr>
<td>2</td>
<td>CuCl₂(3)</td>
<td>O₂</td>
<td>50</td>
<td>MeOH</td>
<td>trace</td>
</tr>
<tr>
<td>3</td>
<td>CuCl₂(3)</td>
<td>O₂</td>
<td>75</td>
<td>MeOH</td>
<td>trace</td>
</tr>
<tr>
<td>4</td>
<td>CuBr₂(3)</td>
<td>O₂</td>
<td>75</td>
<td>MeOH</td>
<td>trace</td>
</tr>
<tr>
<td>5</td>
<td>CuF₂(3)</td>
<td>O₂</td>
<td>75</td>
<td>MeOH</td>
<td>trace</td>
</tr>
<tr>
<td>6</td>
<td>CuSO₄(3)</td>
<td>O₂</td>
<td>75</td>
<td>MeOH</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>Cu(NO₃)₂(3)</td>
<td>O₂</td>
<td>75</td>
<td>MeOH</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>Cupric tartrate (3)</td>
<td>O₂</td>
<td>75</td>
<td>MeOH</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>Cupric citrate (3)</td>
<td>O₂</td>
<td>75</td>
<td>MeOH</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>Cupric acetylacetonate (3)</td>
<td>O₂</td>
<td>75</td>
<td>MeOH</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>Cu[AcO]₂(3)</td>
<td>O₂</td>
<td>75</td>
<td>MeOH</td>
<td>79</td>
</tr>
<tr>
<td>12</td>
<td>Cu[AcO]₂(3)</td>
<td>O₂</td>
<td>50</td>
<td>MeOH</td>
<td>79</td>
</tr>
<tr>
<td>13</td>
<td>Cu[AcO]₂(3)</td>
<td>O₂</td>
<td>40</td>
<td>MeOH</td>
<td>53</td>
</tr>
<tr>
<td>14</td>
<td>Cu[AcO]₂(3)</td>
<td>O₂</td>
<td>50</td>
<td>EtOH</td>
<td>78</td>
</tr>
<tr>
<td>15</td>
<td>Cu[AcO]₂(3)</td>
<td>O₂</td>
<td>50</td>
<td>n-ProOH</td>
<td>71</td>
</tr>
<tr>
<td>16</td>
<td>Cu[AcO]₂(3)</td>
<td>O₂</td>
<td>50</td>
<td>i-ProOH</td>
<td>76</td>
</tr>
<tr>
<td>17</td>
<td>Cu[AcO]₂(3)</td>
<td>O₂</td>
<td>50</td>
<td>n-BuOH</td>
<td>68</td>
</tr>
<tr>
<td>18</td>
<td>Cu[AcO]₂(3)</td>
<td>O₂</td>
<td>50</td>
<td>t-BuOH</td>
<td>74</td>
</tr>
<tr>
<td>19</td>
<td>Cu[AcO]₂(3)</td>
<td>O₂</td>
<td>50</td>
<td>ethylene glycol (EG)</td>
<td>92</td>
</tr>
<tr>
<td>20</td>
<td>Cu[AcO]₂(3)</td>
<td>O₂</td>
<td>50</td>
<td>THF</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>Cu[AcO]₂(3)</td>
<td>O₂</td>
<td>50</td>
<td>CH₃CN</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>Cu[AcO]₂(3)</td>
<td>O₂</td>
<td>50</td>
<td>DMF</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>Cu[AcO]₂(3)</td>
<td>O₂</td>
<td>50</td>
<td>CH₃Cl</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>Cu[AcO]₂(3)</td>
<td>air</td>
<td>50</td>
<td>EG</td>
<td>92</td>
</tr>
<tr>
<td>25</td>
<td>Cu[AcO]₂(2)</td>
<td>air</td>
<td>50</td>
<td>EG</td>
<td>92</td>
</tr>
<tr>
<td>26</td>
<td>Cu[AcO]₂(1)</td>
<td>air</td>
<td>50</td>
<td>EG</td>
<td>92</td>
</tr>
<tr>
<td>27</td>
<td>Cu[AcO]₂(0.5)</td>
<td>air</td>
<td>50</td>
<td>EG</td>
<td>69</td>
</tr>
<tr>
<td>28</td>
<td>Cu[AcO]₂(3)</td>
<td>argon</td>
<td>50</td>
<td>EG</td>
<td>trace</td>
</tr>
<tr>
<td>29</td>
<td>Cu[AcO]₂H₂O(1)</td>
<td>air</td>
<td>50</td>
<td>EG</td>
<td>92</td>
</tr>
</tbody>
</table>

*Reaction conditions: 1aa (1.0 mmol), copper(II) salt (n mol%), solvent (2 mL), atmos. (1 atm), 12 h. †Isolated yield. ‡Reaction time: 24 h.

General procedure: a mixture of 1aa (1.0 mmol, 168.2 mg) and specified copper(II) salt (n mol%) in solvent (2 mL) was stirred at specified reaction temperature under corresponding atmosphere for 12 h. Hydrochloric acid (4 mL, 2%) and methyl tert-butyl ether (MTBE, 4 mL) were added to the reaction mixture successively. The MTBE phase was separated, and the aqueous phase was further extracted with MTBE (4 mL × 2). The combined organic layers were dried over anhydrous sodium sulfate and concentrated in vacuo to give a residue, which was purified by column chromatography on silica gel (eluents: petroleum ether/ethyl acetate 5:1) to provide the desired product 2aa.
3,5-Dimethoxy-4-hydroxybenzaldehyde (2aa): 1 yellow solid, 167.6 mg (the best yield of 92%), m.p. 108–110 °C (lit1 m.p. 110–111 °C); 1H NMR (400 MHz, CDCl₃, ppm): δ 9.81 (br s, 1H), 7.15 (s, 2H), 6.10 (br s, 1H), 3.97 (s, 6H); 13C NMR (100 MHz, CDCl₃, ppm): δ 190.8, 147.4 (2C), 140.8, 128.4, 106.7 (2C), 56.5 (2C); HRMS (ESI): m/z [M+H⁺] calcd. for C₁₉H₁₄O₄ 183.0657, found 183.0635.

2.2 General procedure for the Cu(OAc)₂-catalyzed oxidation of 2,6-disubstituted 4-cresols and 4-alkylphenols 1 (Scheme 3 in the text).
Scheme 3. Scope of I for Cu(OAc)$_2$-catalyzed oxidation. *Reaction conditions: I (1.0 mmol), Cu(OAc)$_2$ (0.01 mmol), EG (2 mL), ambient air, 12 h. "Isolated yield for the oxidation product. 'Recovery for the starting material.

General procedure: A mixture of substrate I (1.0 mmol) and Cu(OAc)$_2$ (0.01 mmol, 1.8 mg) in EG (2 mL) was stirred at specified temperature under ambient air for 12 h. Hydrochloric acid (4 mL, 2%) and MTBE (4 mL) were added to the reaction mixture successively. The MTBE phase was separated, and the aqueous phase was further extracted with MTBE (4 mL × 2). The combined organic layers were dried over anhydrous sodium sulfate and concentrated in vacuo to give a residue, which was purified by column chromatography on silica gel (eluents: petroleum ether/ethyl acetate 5:1) to provide the corresponding product 2.
3,5-Diethoxy-4-hydroxybenzaldehyde (2ab): yellow solid, 182.9 mg (87% yield), m.p. 116–118 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\), ppm): \(\delta 9.79\) (br s, 1H), 7.12 (s, 2H), 6.07 (br s, 1H), 4.20 (q, \(J = 7.2\) Hz, 4H), 1.49 (t, \(J = 7.2\) Hz, 6H); \(^13\)C NMR (100 MHz, CDCl\(_3\), ppm): \(\delta 190.9, 146.6\) (2C), 141.2, 128.3, 107.6 (2C), 65.1 (2C), 14.8 (2C); HRMS (ESI): \(m/z\) [M+H\(^+\)] calcd. for C\(_{14}\)H\(_{15}\)O\(_4\) 211.0970, found 211.0962.

3,5-Dipropoxy-4-hydroxybenzaldehyde (2ac): yellow solid, 200.2 mg (84% yield), m.p. 64–66 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\), ppm): \(\delta 9.79\) (br s, 1H), 7.12 (s, 2H), 6.05 (br s, 1H), 4.09 (t, \(J = 7.2\) Hz, 4H), 1.89 (sext, \(J = 7.2\) Hz, 2H), 1.06 (t, \(J = 7.2\) Hz, 6H); \(^13\)C NMR (100 MHz, CDCl\(_3\), ppm): \(\delta 190.9, 146.8\) (2C), 141.4, 128.3, 107.7 (2C), 71.0 (2C), 22.5 (2C), 14.8 (2C); HRMS (ESI): \(m/z\) [M+H\(^+\)] calcd. for C\(_{15}\)H\(_{17}\)O\(_4\) 239.1282.

3,5-Dibutoxy-4-hydroxybenzaldehyde (2ad): yellow solid, 213.1 mg (80% yield), m.p. 90–92 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\), ppm): \(\delta 9.77\) (br s, 1H), 7.11 (s, 2H), 6.16 (br s, 1H), 4.10 (t, \(J = 7.2\) Hz, 4H), 1.81 (quint, \(J = 7.2\) Hz, 4H), 1.48 (sext, \(J = 7.2\) Hz, 4H), 0.96 (t, \(J = 7.2\) Hz, 6H); \(^13\)C NMR (100 MHz, CDCl\(_3\), ppm): \(\delta 189.8, 149.0\) (2C), 147.0, 130.0, 108.7 (2C), 69.8 (2C), 28.0 (2C), 22.4 (2C), 14.0 (2C); HRMS (ESI): \(m/z\) [M–H\(^–\)] calcd. for C\(_{16}\)H\(_{19}\)O\(_4\) 265.1440, found 265.1446.

3,5-Diisobutoxy-4-hydroxybenzaldehyde (2ae): yellow solid, 221.0 mg (83% yield), m.p. 58–60 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\), ppm): \(\delta 9.79\) (br s, 1H), 7.11 (s, 2H), 6.03 (br s, 1H), 3.88 (d, \(J = 6.8\) Hz, 4H), 2.17 (heptet, \(J = 6.8\) Hz, 2H), 1.05 (d, \(J = 6.8\) Hz, 12H); \(^13\)C NMR (100 MHz, CDCl\(_3\), ppm): \(\delta 189.9, 145.8\) (2C), 140.4, 127.2, 106.7 (2C), 74.8 (2C), 27.1 (2C), 18.2 (4C); HRMS (ESI): \(m/z\) [M–H\(^–\)] calcd. for C\(_{17}\)H\(_{21}\)O\(_4\) 265.1436.

3-Hydroxy-4-hydroxy-5-methoxybenzaldehyde (2af): yellow solid, 168.7 mg (86% yield), m.p. 72–74 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\), ppm): \(\delta 9.80\) (br s, 1H), 7.13 (d, \(J = 1.6\) Hz, 2H), 6.10 (br s, 1H), 4.21 (t, \(J = 6.8\) Hz, 2H), 3.97 (s, 3H), 1.49 (t, \(J = 6.8\) Hz, 3H); \(^13\)C NMR (100 MHz, CDCl\(_3\), ppm): \(\delta 190.9, 147.4, 146.5, 141.0, 128.3, 107.6, 106.6, 65.1, 56.4, 14.8\); HRMS (ESI): \(m/z\) [M+H\(^+\)] calcd. for C\(_{16}\)H\(_{15}\)O\(_4\) 197.0814, found 197.0804.

4-Hydroxy-3-methoxy-5-\(\alpha\)-propoxybenzaldehyde (2ag): yellow solid, 172.4 mg (82% yield), m.p. 84–86 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\), ppm): \(\delta 9.80\) (br s, 1H), 7.14 (s, 2H), 6.06 (br s, 1H), 4.09 (t, \(J = 6.8\) Hz, 2H), 3.97 (s, 3H), 1.88 (sext, \(J = 6.8\) Hz, 2H), 1.06 (t, \(J = 6.8\) Hz, 3H); \(^13\)C NMR (100 MHz, CDCl\(_3\), ppm): \(\delta 189.9, 146.4, 145.6, 140.0, 127.3, 106.6, 105.6, 70.0, 55.4, 21.4, 9.4\); HRMS (ESI): \(m/z\) [M+H\(^+\)] calcd. for C\(_{17}\)H\(_{17}\)O\(_4\) 211.0970, found 211.0962.

3,5-Di-\(\alpha\)-tert-butyl-4-hydroxybenzaldehyde (2ah): white solid, 181.5 mg (79% yield), m.p. 188–190 °C (lit\(^2\) m.p. 190–191 °C); \(^1\)H NMR (400 MHz, CDCl\(_3\), ppm): \(\delta 9.85\) (br s, 1H), 7.73 (s, 2H), 5.85 (br s, 1H), 1.48 (s, 18H); \(^13\)C NMR (100 MHz, CDCl\(_3\), ppm): \(\delta 191.9, 159.7\) (2C), 136.5, 128.7, 127.7 (2C), 34.4 (2C), 30.1 (6C); HRMS (ESI): \(m/z\) [M+H\(^+\)] calcd. for C\(_{15}\)H\(_{23}\)O\(_2\) 235.1698, found 235.1693.
3,5-Dimethyl-4-hydroxybenzaldehyde (2ai): white solid, 130.6 mg (87% yield), m.p. 112–114 °C (lit: m.p. 113–114 °C); ²H NMR (400 MHz, CDCl₃, ppm): δ 9.81 (br s, 1H), 7.54 (s, 2H), 5.46 (br s, 1H), 2.31 (s, 6H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 191.5, 158.1 (2C), 131.0, 129.3, 123.7 (2C), 15.8 (2C); HRMS (ESI): m/z [M+H⁺] calcd. for C₉H₁₀O₂ 151.0759, found 151.0750.

3-tert-Butyl-4-hydroxy-5-methylbenzaldehyde (2aj): white solid, 161.5 mg (84% yield), m.p. 148–150 °C (lit: m.p. 152–153 °C); ²H NMR (400 MHz, CDCl₃, ppm): δ 9.83 (br s, 1H), 7.71 (s, 1H), 7.70 (s, 1H), 5.49 (br s, 1H), 2.32 (s, 3H), 1.44 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 191.7, 158.6, 153.6, 136.4, 130.8, 128.0, 123.8, 34.7, 29.5 (3C), 15.9; HRMS (ESI): m/z [M+H⁺] calcd. for C₁₃H₁₇O₂ 193.1229, found 193.1234.

4-Hydroxy-3-methoxy-5-methylbenzaldehyde (2ak): white solid, 146.2 mg (88% yield), m.p. 98–100 °C; ²H NMR (400 MHz, CDCl₃, ppm): δ 9.80 (br s, 1H), 7.30 (s, 1H), 7.28 (s, 1H), 6.24 (br s, 1H), 3.96 (s, 3H), 2.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 191.2, 149.8, 146.7, 128.9, 128.8, 124.0, 106.7, 56.2, 15.3; HRMS (ESI): m/z [M+H⁺] calcd. for C₁₂H₁₅O₂ 167.0708, found 167.0706.

3-Ethoxy-4-hydroxy-5-methylbenzaldehyde (2al): white solid, 153.2 mg (85% yield), m.p. 86–88 °C; ²H NMR (400 MHz, CDCl₃, ppm): δ 9.78 (br s, 1H), 7.29 (s, 1H), 7.26 (s, 1H), 6.34 (br s, 1H), 4.19 (q, J = 6.8 Hz, 2H), 2.32 (s, 3H), 1.47 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 191.3, 149.9, 146.1, 128.8, 128.7, 124.0, 107.5, 64.8, 15.4, 14.8; HRMS (ESI): m/z [M+H⁺] calcd. for C₁₀H₁₅O₂ 181.0865, found 181.0862.

4-Hydroxy-3-methyl-5-propoxybenzaldehyde (2am): white solid, 163.2 mg (84% yield), m.p. 110–112 °C; ²H NMR (400 MHz, CDCl₃, ppm): δ 9.79 (br s, 1H), 7.29 (s, 1H), 7.27 (s, 1H), 6.33 (br s, 1H), 4.08 (t, J = 6.8 Hz, 2H), 2.32 (s, 3H), 1.87 (sext, J = 6.8 Hz, 2H), 1.06 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 191.3, 149.9, 146.1, 128.8, 128.7, 124.0, 107.5, 70.7, 22.4, 15.4, 10.5; HRMS (ESI): m/z [M+H⁺] calcd. for C₁₁H₁₃O₂ 195.1021, found 195.1020.

3-(Benzoxyl)-4-hydroxy-5-methylbenzaldehyde (2an): white solid, 203.5 mg (84% yield), m.p. 118–120 °C; ²H NMR (400 MHz, CDCl₃, ppm): δ 9.71 (br s, 1H), 7.40–7.18 (m, 7H), 6.24 (br s, 1H), 5.09 (s, 2H), 2.25 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 191.2, 149.9, 145.9, 135.6, 128.9, 128.85 (2C), 128.8, 128.7, 128.1 (2C), 124.4, 108.1, 71.3, 15.4; HRMS (ESI): m/z [M+H⁺] calcd. for C₁₇H₁₅O₃ 243.1021, found 243.1012.

5,5'-Methylenebis(3-tert-butyl-4-hydroxybenzaldehyde) (2ao): yellow solid, 283.7 mg (77% yield), m.p. 184–186 °C; ²H NMR (400 MHz, CDCl₃, ppm): δ 9.85 (br s, 2H), 7.75 (d, J = 2.0 Hz, 2H), 7.70 (d, J = 2.0 Hz, 2H), 6.73 (br s, 2H), 4.06 (s, 2H), 1.45 (s, 18H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 191.3 (2C), 157.5 (2C), 136.9 (2C), 131.0 (2C), 129.9 (2C), 128.2 (2C), 127.1 (2C), 34.5 (2C), 30.9, 29.8 (6C); HRMS (ESI): m/z [M+H⁺] calcd. for C₂₉H₂₉O₂ 369.2066, found 369.2045.
4-Hydroxy-2,3,5-trimethoxybenzaldehyde (2ap): white solid, 171.9 mg (81% yield), m.p. 112–114 °C; 1H NMR (400 MHz, CDCl3, ppm): δ 10.25 (br s, 1H), 7.12 (s, 1H), 6.17 (br s, 1H), 3.98 (s, 3H), 3.97 (s, 3H), 3.91 (s, 3H); 13C NMR (100 MHz, CDCl3, ppm): δ 188.4, 152.5, 145.9, 144.2, 139.9, 121.0, 103.2, 62.8, 61.0, 56.4; HRMS (ESI): m/z [M+H+] calcd. for C10H13O5 213.0763, found 213.0760.

1-(4-Hydroxy-3,5-dimethoxyphenyl)ethanone (2ba): yellow solid, 164.8 mg (84% yield), m.p. 122–124 °C (liq); m.p. 121–122 °C; 1H NMR (400 MHz, CDCl3, ppm): δ 7.26 (d, J = 4.0 Hz, 2H), 5.95 (br s, 1H), 3.96 (s, 6H), 2.58 (s, 3H); 13C NMR (100 MHz, CDCl3, ppm): δ 197.1, 147.4 (2C), 140.4, 129.5, 106.5 (2C), 57.1 (2C), 26.8; HRMS (EI): m/z [M] calcd. for C10H13O4 196.0736, found 196.0737.

1-(3,5-Diethoxy-4-hydroxyphenyl)ethanone (2bb): yellow solid, 183.9 mg (82% yield), m.p. 117–119 °C; 1H NMR (400 MHz, CDCl3, ppm): δ 7.15 (s, 2H), 6.02 (br s, 1H), 4.10 (q, J = 6.8 Hz, 4H), 2.48 (s, 3H), 1.40 (t, J = 6.8 Hz, 6H); 13C NMR (100 MHz, CDCl3, ppm): δ 197.3, 146.7 (2C), 141.1, 129.4, 107.7 (2C), 65.8 (2C), 26.9, 15.5 (2C); HRMS (EI): m/z [M] calcd. for C12H16O4 224.1049, found 224.1047.

1-(4-Hydroxy-3,5-di-n-propoxyphenyl)ethanone (2be): white solid, 201.0 mg (80% yield), m.p. 98–100 °C; 1H NMR (400 MHz, CDCl3, ppm): δ 7.23 (s, 2H), 5.93 (br s, 1H), 4.07 (t, J = 6.8 Hz, 4H), 2.55 (s, 3H), 1.88 (m, 4H), 1.06 (t, J = 7.2 Hz, 6H); 13C NMR (100 MHz, CDCl3, ppm): δ 196.7, 146.2 (2C), 140.4, 128.7, 107.0 (2C), 71.1 (2C), 26.3, 22.5 (2C), 10.4 (2C); HRMS (EI): m/z [M] calcd. for C16H20O4 252.1362, found 252.1361.

1-(3,5-Di-n-butoxy-4-hydroxyphenyl)ethanone (2bd): white solid, 215.9 mg (77% yield), m.p. 90–92 °C; 1H NMR (400 MHz, CDCl3, ppm): δ 7.23 (s, 2H), 5.93 (br s, 1H), 4.11 (t, J = 6.8 Hz, 4H), 2.55 (s, 3H), 1.83 (m, 4H), 1.52 (m, 4H), 0.99 (q, J = 7.2 Hz, 6H); 13C NMR (100 MHz, CDCl3, ppm): δ 197.3, 146.8 (2C), 141.1, 129.3, 107.6 (2C), 70.0 (2C), 31.9 (2C), 26.9, 19.8 (2C), 14.4 (2C); HRMS (EI): m/z [M] calcd. for C22H28O4 280.1675, found 280.1676.

1-(3-tert-butyl-4-hydroxy-5-methoxyphenyl)ethanone (2be): yellow solid, 175.6 mg (79% yield), m.p. 82–84 °C; 1H NMR (400 MHz, CDCl3, ppm): δ 7.58 (s, 1H), 7.43 (s, 1H), 6.47 (br s, 1H), 3.95 (s, 3H), 2.57 (s, 3H), 1.43 (s, 9H); 13C NMR (100 MHz, CDCl3, ppm): δ 197.7, 149.7, 147.3, 135.5, 129.3, 122.1, 108.3, 56.9, 35.3, 29.8 (3C), 26.7; HRMS (EI): m/z [M] calcd. for C14H14O3 222.1256, found 222.1254.

1-(3-tert-Butyl-5-ethoxy-4-hydroxyphenyl)ethanone (2bf): white solid, 181.9 mg (77% yield), m.p. 80–82 °C; 1H NMR (400 MHz, CDCl3, ppm): δ 7.57 (s, 1H), 7.41 (s, 1H), 6.54 (br s, 1H), 4.18 (q, J = 6.8 Hz, 2H), 2.56 (s, 3H), 1.47 (t, J = 6.8 Hz, 3H), 1.43 (s, 9H); 13C NMR (100 MHz, CDCl3, ppm): δ 197.2, 149.1, 145.9, 134.8, 128.6, 121.3, 108.5, 64.9, 34.7, 29.2 (3C), 26.2, 14.8; HRMS (EI): m/z [M] calcd. for C14H14O3 236.1412, found 236.1414.
1-(3-tert-Butyl-4-hydroxy-5-\(n\)-propoxyphenyl)ethanone (2bg): yellow solid, 190.2 mg (76\% yield), m.p. 78–80 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\), ppm): \(\delta\) 7.59 (s, 1H), 7.43 (s, 1H), 6.57 (br s, 1H), 4.09 (t, \(J = 6.8\) Hz, 2H), 2.58 (s, 3H), 1.89 (sext, \(J = 6.8\) Hz, 2H), 1.46 (s, 9H), 1.09 (t, \(J = 6.8\) Hz, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\), ppm): \(\delta\) 197.2, 149.1, 146.0, 134.8, 128.6, 121.3, 108.5, 70.8, 34.7, 29.2 (3C), 26.2, 22.5, 10.5; HRMS (EI): \(m/z\) [M\(^+\)] calcd. for C\(_{24}\)H\(_{24}\)O\(_3\): 250.1569, found 250.1570.

1-(4-Hydroxy-3,5-dimethylphenyl)ethanone (2bh): yellow solid, 136.3 mg (83\% yield), m.p. 157–159 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\), ppm): \(\delta\) 7.64 (s, 2H), 5.43 (br s, 1H), 2.54 (s, 3H), 2.30 (s, 6H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\), ppm): \(\delta\) 197.6, 157.0, 129.6 (3C), 123.1 (2C), 26.3, 16.0 (2C); HRMS (EI): \(m/z\) [M\(^+\)] calcd. for C\(_{10}\)H\(_{12}\)O\(_2\): 164.0834, found 164.0838.

1-(4-Hydroxy-3,5-dimethoxyphenyl)propan-1-one (2ca):\(^6\) white solid, 172.4 mg (82\% yield), m.p. 109–111 °C (lit\(^6\) m.p. 109–110 °C); \(^1\)H NMR (400 MHz, CDCl\(_3\), ppm): \(\delta\) 7.26 (s, 2H), 6.09 (br s, 1H), 3.95 (s, 6H), 2.97 (q, \(J = 7.2\) Hz, 2H), 1.22 (t, \(J = 7.2\) Hz, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\), ppm): \(\delta\) 199.3, 146.8 (2C), 139.5, 128.5, 105.4 (2C), 56.4 (2C), 31.3, 8.5; HRMS (EI): \(m/z\) [M\(^+\)] calcd. for C\(_{11}\)H\(_{16}\)O\(_2\): 210.0892, found 210.0893.

1-(4-Hydroxy-3,5-dimethoxyphenyl)butan-1-one (2da): yellow solid, 168.2 mg (75\% yield), m.p. 89–91 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\), ppm): \(\delta\) 7.26 (s, 2H), 5.93 (br s, 1H), 3.96 (s, 6H), 2.91 (t, \(J = 7.2\) Hz, 2H), 1.78 (sext, \(J = 7.2\) Hz, 2H), 1.01 (t, \(J = 7.2\) Hz, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\), ppm): \(\delta\) 198.9, 146.7 (2C), 139.5, 128.7, 105.4 (2C), 56.5 (2C), 40.1, 18.0, 13.9; HRMS (EI): \(m/z\) [M\(^+\)] calcd. for C\(_{12}\)H\(_{18}\)O\(_2\): 224.1049, found 224.1047.

1-(4-Hydroxy-3,5-dimethoxyphenyl)pentan-1-one (2ea): yellow solid, 166.8 mg (70\% yield), m.p. 76–78 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\), ppm): \(\delta\) 7.26 (s, 2H), 5.93 (br s, 1H), 3.96 (s, 6H), 2.92 (t, \(J = 7.6\) Hz, 2H), 1.71 (sext, \(J = 7.6\) Hz, 2H), 1.42 (sext, \(J = 7.6\) Hz, 2H), 0.96 (t, \(J = 7.6\) Hz, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\), ppm): \(\delta\) 199.0, 146.7 (2C), 139.5, 128.7, 105.5 (2C), 56.5 (2C), 37.9, 26.8, 22.5, 14.0; HRMS (ESI): \(m/z\) [M\(^+\)H\(^+\)] calcd. for C\(_{13}\)H\(_{20}\)O\(_2\): 239.1283, found 239.1277.

(4-Hydroxy-3,5-dimethoxyphenyl)(phenyl)methanone (2fa): yellow solid, 170.5 mg (66\% yield), m.p. 124–126 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\), ppm): \(\delta\) 7.77 (d, \(J = 8.0\) Hz, 2H), 7.59 (t, \(J = 7.2\) Hz, 1H), 7.49 (t, \(J = 7.2\) Hz, 2H), 7.13 (s, 2H), 5.98 (br s, 1H), 3.92 (s, 6H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\), ppm): \(\delta\) 195.5, 146.6 (2C), 139.4, 138.2, 132.0, 129.7 (2C), 128.6, 128.2 (2C), 107.8 (2C), 56.5 (2C); HRMS (EI): \(m/z\) [M\(^+\)] calcd. for C\(_{21}\)H\(_{19}\)O\(_3\): 358.0892, found 358.0896.

1-(4-Hydroxy-3,5-dimethylphenyl)-2-methylpropan-1-one (2gh): pale yellow solid, 132.7 mg (69\% yield), m.p. 104–106 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\), ppm): \(\delta\) 7.65 (s, 2H), 5.24 (br s, 1H), 3.52 (heptet, \(J = 6.8\) Hz, 1H), 2.29 (s, 6H), 1.19 (d, \(J = 6.8\) Hz, 6H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\), ppm): \(\delta\) 203.9, 156.8, 129.5 (2C), 128.5 (2C), 123.1, 34.8, 19.4 (2C), 16.0 (2C); HRMS (EI): \(m/z\) [M\(^+\)] calcd. for C\(_{12}\)H\(_{16}\)O\(_2\): 192.1150, found 192.1151.
1-(4-Hydroxy-3,5-dimethylphenyl)-2,2-dimethylpropan-1-one (2hh): yellow oil, 127.9 mg (62% yield); 1H NMR (400 MHz, CDCl$_3$, ppm): δ 7.51 (s, 2H), 5.30 (br s, 1H), 2.27 (s, 6H), 1.36 (s, 9H); 13C NMR (100 MHz, CDCl$_3$, ppm): δ 207.3, 155.2, 129.8 (4C), 122.5, 44.0, 28.5 (3C), 16.0 (2C); HRMS (EI): m/z [M$^+$] calcd. for C$_{13}$H$_{16}$O$_2$ 206.1307, found 206.1304.

1-(4-Hydroxy-3,5-dimethylphenyl)-2-phenylethanone (2ih): white solid, 168.2 mg (70% yield), m.p. 110–112 °C; 1H NMR (400 MHz, CDCl$_3$, ppm): δ 7.69 (s, 2H), 7.37–7.19 (m, 5H), 5.23 (br s, 1H), 4.22 (s, 2H), 2.27 (s, 6H); 13C NMR (100 MHz, CDCl$_3$, ppm): δ 197.1, 157.1, 135.1, 130.0 (2C), 129.4 (2C), 129.0, 128.6 (2C), 126.7 (2C), 123.2, 45.1, 16.0 (2C); HRMS (EI): m/z [M$^+$] calcd. for C$_{19}$H$_{18}$O$_2$ 240.1150, found 240.1149.

1-(4-Hydroxy-3,5-dimethylphenyl)-3-phenylpropan-1-one (2jh): white solid, 185.6 mg (73% yield), m.p. 99–101 °C; 1H NMR (400 MHz, CDCl$_3$, ppm): δ 7.64 (s, 2H), 7.32–7.18 (m, 5H), 5.25 (br s, 1H), 3.24 (t, $J = 7.2$ Hz, 2H), 3.04 (t, $J = 7.2$ Hz, 2H), 2.27 (s, 6H); 13C NMR (100 MHz, CDCl$_3$, ppm): δ 198.6, 156.9, 141.5, 129.4 (2C), 129.3, 128.5 (2C), 128.4 (2C), 126.1 (2C), 123.1, 40.1, 30.5, 16.0 (2C); HRMS (EI): m/z [M$^+$] calcd. for C$_{23}$H$_{20}$O$_2$ 254.1307, found 254.1309.

3,5-Dibromo-4-hydroxybenzaldehyde (2aq)8: white solid, 72.8 mg (26% yield), m.p. 182–184 °C (lit8 m.p. 183 °C); 1H NMR (400 MHz, CDCl$_3$, ppm): δ 9.80 (br s, 1H), 8.00 (s, 2H), 6.40 (br s, 1H); 13C NMR (100 MHz, CDCl$_3$, ppm): δ 188.2, 154.4, 133.7 (2C), 131.3, 110.7 (2C); HRMS (ESI): m/z [M–H$^+$] calcd. for C$_{13}$H$_{12}$Br$_2$O$_2$ 276.8500, found 276.8490. Recovery of the starting material: 172.2 mg (65%).

3,5-Dichloro-4-hydroxybenzaldehyde (2ar): white solid, 34.4 mg (18% yield), m.p. 160–162 °C; 1H NMR (400 MHz, CDCl$_3$, ppm): δ 9.82 (s, 1H), 7.83 (s, 2H), 6.43 (br s, 1H); 13C NMR (100 MHz, CDCl$_3$, ppm): δ 188.5, 152.9, 130.1 (2C), 129.8 (2C), 122.2; HRMS (ESI): m/z [M–H$^+$] calcd. for C$_{13}$H$_{12}$Cl$_2$O$_2$ 188.9510, found 188.9502. Recovery of the starting material: 132.8 mg (75%).

3-Bromo-5-fluoro-4-hydroxybenzaldehyde (2as): white solid, 19.7 mg (9% yield), m.p. 138–140 °C; 1H NMR (400 MHz, CDCl$_3$, ppm): δ 9.74 (d, $J = 2.0$ Hz, 1H), 7.78 (t, $J = 1.6$ Hz, 1H), 7.54 (dd, $J = 9.6, 2.0$ Hz, 1H), 6.33 (br s, 1H); 13C NMR (100 MHz, CDCl$_3$, ppm): δ 188.7, 151.1 (d, $J = 247.3$), 147.2 (d, $J = 15.0$), 130.6 (d, $J = 2.7$), 130.0 (d, $J = 5.4$), 115.6 (d, $J = 18.8$), 111.4 (d, $J = 1.4$); HRMS (ESI): m/z [M–H$^+$] calcd. for C$_{13}$H$_{12}$BrFO$_2$ 216.9300, found 216.9281. Recovery of the starting material: 179.6 mg (82%).

The substrate failed to undergo the oxidation. Recovery of the starting material: 151.8 mg (96%).
3-Bromo-4-hydroxy-5-methoxybenzaldehyde (2au): white solid, 78.6 mg (34% yield), m.p. 162–164 °C (lit8 m.p. 163–166 °C); 1H NMR (400 MHz, CDCl3, ppm): δ 9.79 (br s, 1H), 7.64 (d, J = 1.6 Hz, 1H), 7.36 (d, J = 1.6 Hz, 1H), 6.50 (br s, 1H), 3.99 (s, 3H); 13C NMR (100 MHz, CDCl3, ppm): δ 189.8, 148.9, 147.7, 130.2, 130.0, 108.2, 108.0, 56.6; HRMS (ESI): m/z [M–H+] calcd. for C13H9BrO2 228.9500, found 228.9473. Recovery of the starting material: 130.2 mg (60%).

3-Fluoro-4-hydroxy-5-methoxybenzaldehyde (2av): white solid, 44.2 mg (26% yield), m.p. 116–118 °C; 1H NMR (400 MHz, CDCl3, ppm): δ 9.81 (s, 1H), 7.33–7.25 (m, 2H), 5.98 (br s, 1H), 4.00 (s, 3H); 13C NMR (100 MHz, CDCl3, ppm): δ 190.0 (d, J = 2.3), 150.4 (d, J = 243.8), 148.7 (d, J = 5.3), 140.0 (d, J = 13.5), 128.1 (d, J = 6.3), 113.0 (d, J = 18.5), 106.0 (d, J = 1.7), 56.7; HRMS (ESI): m/z [M+H+] calcd. for C13H8FNO 171.0457, found 171.0447. Recovery of the starting material: 104.6 mg (67%).

5-Formyl-2-hydroxy-3-methoxybenzonitrile (2aw): white solid, 28.3 mg (16% yield), m.p. 196–198 °C; 1H NMR (400 MHz, CDCl3, ppm): δ 9.84 (s, 1H), 7.66 (s, 1H), 7.58 (s, 1H), 6.90 (br s, 1H), 4.04 (s, 3H); 13C NMR (100 MHz, DMSO-d6, ppm): δ 190.6, 156.1, 148.9, 129.6, 129.2, 116.3, 113.6, 99.7, 56.8; HRMS (EI): m/z [M+I+] calcd. for C14H11ON2 228.9400, found 228.9426. Recovery of the starting material: 125.6 mg (77%).

1-(3,5-Dibromo-4-hydroxyphenyl)ethane (2bi): white solid, 67.6 mg (23% yield), m.p. 185–187 °C; 1H NMR (400 MHz, CDCl3, ppm): δ 8.08 (s, 2H), 6.33 (br s, 1H), 2.56 (s, 3H); 13C NMR (100 MHz, CDCl3, ppm): δ 194.3, 153.3, 132.6 (2C), 131.9, 110.1 (2C), 26.3; HRMS (ESI): m/z [M+H+] calcd. for C14H11Br2O2 292.8813, found 292.8817. Recovery of the starting material: 207.2 mg (74%).

2.3 General procedure for the Cu(OAc)2-catalyzed oxidation of 4-hydroxybenzyl alcohols and 4-hydroxybenzyl ethers 3 (Table 2 in the text).

Table 2. Cu(OAc)2-catalyzed oxygenation of 3.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate 3</th>
<th>Product 2</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>96</td>
</tr>
</tbody>
</table>
General procedure: a mixture of substrate 3 (1.0 mmol) and Cu(OAc)$_2$ (0.01 mmol, 1.8 mg) in EG (2 mL) was stirred at 50 °C under ambient air for 8 h. Hydrochloric acid (4 mL, 2%) and MTBE (4 mL) were added to the reaction mixture successively. The MTBE phase was separated, and the aqueous phase was further extracted with MTBE (4 mL × 2). The combined organic layers were dried over anhydrous sodium sulfate and concentrated in vacuo to give a residue, which was purified by column chromatography on silica gel (eluents: petroleum ether/ethyl acetate 5:1) to provide the corresponding product 2.

3,5-Dimethoxy4-hydroxybenzaldehyde (2aa): yellow solid, 174.9 mg (96% yield, from 3a); 156.7 mg (86% yield, from 3b); 171.2 mg (94% yield, from 3e). The spectral data see 2.1 section.

3-Ethoxy-4-hydroxy-5-methoxybenzaldehyde (2af): yellow solid, 182.5 mg (93% yield, from 3d); 164.8 mg (84% yield, from 3e); 160.9 mg (82% yield, from 3f). The spectral data see 2.2 section.

3,5-dimethyl-4-hydroxybenzaldehyde (2ai): white solid, 138.2 mg (92% yield, from 3g); 127.6 mg (85% yield, from 3h). The spectral data see 2.2 section.

4-Hydroxy-3-methoxy-5-methylbenzaldehyde (2ak): white solid, 154.5 mg (93% yield, from 3i); 144.6 mg (87% yield, from 3j). The spectral data see 2.2 section.

1-(4-Hydroxy-3,5-dimethoxyphenyl)ethanone (2ba): yellow solid, 178.5 mg (91% yield, from 3k); 162.8 mg (83% yield, from 3l). The spectral data see 2.2 section.

1-(4-Hydroxy-3,5-dimethoxyphenyl)propan-1-one (2ca): white solid, 189.2 mg (90% yield, from 3m); 170.3 mg (81% yield, from 3n). The spectral data see 2.2 section.

2.4 The gram-scale oxidations of 1aa and 1ba (Scheme 4 in the text).
General procedure: a mixture of substrate 1aa or 1ba (10 mmol) and Cu(OAc)$_2$ (0.1 mmol, 18 mg) in EG (8 mL) was stirred at 50 °C under ambient air for 18 h. Hydrochloric acid (15 mL, 2%) and MTBE (15 mL) were added to the reaction mixture successively. The MTBE phase was separated, and the aqueous phase was further extracted with MTBE (15 mL \times 2). The combined organic layers were dried over anhydrous sodium sulfate and concentrated in vacuo to give a residue, which was purified by column chromatography on silica gel (eluents: petroleum ether/ethyl acetate 5:1) to provide the corresponding product 2.

3,5-Dimethoxy-4-hydroxybenzaldehyde (2aa):1 yellow solid, 1.585 g (87% yield).

1-(4-Hydroxy-3,5-dimethoxyphenyl)ethanone (2ba):5 yellow solid, 1.570 g (80% yield).

2.5 Limitations of Cu(OAc)$_2$-catalyzed oxygenation (Scheme 5 in the text).
Scheme 5. Limitations of Cu(OAc)₂-catalyzed oxygenation due to (A) undesired coupling or (B) inhibited oxygenation.

Procedure for Scheme 5(A): a mixture of substrate (1.0 mmol) and Cu(AcO)₂ (0.01 mmol, 1.8 mg) in EG (2 mL) was stirred at 75 °C under ambient air for 12 h. Hydrochloric acid (4 mL, 2%) and MTBE (4 mL) were added to the reaction mixture successively. The MTBE phase was separated, and the aqueous phase was further extracted with MTBE (4 mL × 2). The combined organic layers were dried over anhydrous sodium sulfate and concentrated in vacuo to give a residue, which was purified by column chromatography on silica gel (eluents: petroleum ether/ethyl acetate 5:1) to provide the corresponding products.

Recovery of the starting material: 20.5 mg (19%).

5,5'-Dimethylbiphenyl-2,2'-diol (4): white solid, 79.3 mg (37% yield), m.p. 148–150 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.11 (dd, J = 8.0, 1.6 Hz, 2H), 7.06 (d, J = 1.6 Hz, 2H), 6.92 (d, J = 8.0 Hz, 2H), 5.43 (br s, 2H), 2.32 (s, 6H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 150.6 (2C), 131.6 (2C), 130.8 (2C), 130.3 (2C), 123.7 (2C), 116.5 (2C), 20.5 (2C); HRMS (EI): m/z [M⁺] calcd. for C₁₄H₁₄O₂ 214.0994, found 214.0992.

4-Hydroxybenzaldehyde: yellow solid, 11.0 mg (9% yield), m.p. 116–118 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.87 (br s, 1H), 7.83 (d, J = 8.8 Hz, 2H), 7.98 (d, J = 8.8 Hz, 2H), 6.29 (br s, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 191.2, 161.5, 132.5 (2C), 129.9, 116.0 (2C); HRMS (EI): m/z [M⁺] calcd. for C₇H₆O₂ 122.0368, found 122.0367.
Recycling of the starting material: 78.6 mg (42%).

3-Bromo-4-hydroxybenzaldehyde: white solid, 14.1 mg (7% yield), m.p. 130–132 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.83 (br s, 1H), 8.04 (s, 1H), 7.77 (d, J = 8.4 Hz, 1H), 7.15 (d, J = 8.0 Hz, 1H), 6.43 (s, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 192.7, 151.8, 132.9, 130.3, 128.1, 127.5, 127.4; HRMS (ESI): m/z [M-H⁺] calcd. for C₇H₄BrO₂ 198.9395, found 198.9359.

3,3'-Dimethoxy-5,5'-dimethylbiphenyl-2,2'-diol (5): brown solid, 133.0 mg (97% yield), m.p. 132–134 °C (lit. m.p. 133–135 °C); ¹H NMR (400 MHz, CDCl₃, ppm): δ 6.73 (s, 2H), 6.72 (s, 2H), 5.96 (br s, 2H), 3.91 (s, 6H), 2.33 (s, 6H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 147.1 (2C), 140.3 (2C), 129.6 (2C), 124.4 (2C), 123.4 (2C), 111.3 (2C), 56.0 (2C), 21.2 (2C); HRMS (ESI): m/z [M+H⁺] calcd. for C₁₆H₁₉O₄ 275.1283, found 275.1283.

Procedure for Scheme 5(B): a mixture of corresponding substrate (1.0 mmol) and Cu(AcO)₂ (0.01 mmol, 1.8 mg) in EG (2 mL) was stirred at 95 °C under ambient air. No reaction occurred after 12 h monitored by TLC.

2.5 Mechanistic studies (Scheme 6 in the text).

Scheme 6. Mechanistic studies.

Procedure for Scheme 6(a): a mixture of substrate 1aa (1.0 mmol, 168.2 mg) and Cu(AcO)₂ (0.01 mmol, 1.8 mg) in EG (2 mL) was stirred at 50 °C under ambient air for 4 h. Hydrochloric acid (5.0 mL, 2%) and MTBE (4 mL) were added to the reaction mixture successively. The MTBE phase was separated, and the aqueous phase was further extracted with MTBE (4 mL × 2). The combined organic layers were dried over anhydrous...
sodium sulfate and concentrated in vacuo to give a residue, which was purified by column chromatography on silica gel (eluents: petroleum ether/ethyl acetate 5:1) to provide intermediate 3c and product 2aa.

4-(2-Hydroxyethoxy)methyl-2,6-dimethoxyphenol (3c): yellow solid, 61.6 mg (27% yield), m.p. 78–80 °C; 1H NMR (400 MHz, CDCl$_3$, ppm): δ 6.58 (s, 2H), 5.52 (br s, 1H), 4.48 (s, 2H), 3.90 (s, 6H), 3.77 (t, J = 4.4 Hz, 2H), 3.60 (t, J = 4.4 Hz, 2H); 13C NMR (100 MHz, CDCl$_3$, ppm): δ 147.0 (2C), 134.3, 128.9, 104.7 (2C), 73.7, 71.2, 61.9, 56.3 (2C); HRMS (ESI): m/z [M+Na]$^+$ calcld. for C$_{11}$H$_{16}$O$_3$Na 251.0895, found 251.0894.

![Structure of 4-(2-Hydroxyethoxy)methyl-2,6-dimethoxyphenol (3c)](image)

3,5-Dimethoxy-4-hydroxybenzaldehyde (2aa): yellow solid, 125.7 mg (69% yield). The spectral data see 2.1 section.

Procedure for Scheme 6(b): a mixture of substrate 1aa (1.0 mmol) and dried Cu(AcO)$_2$ (dried in a vacuum oven at 60 °C for 10 h, 4.0 mmol, 726.5 mg) in dry EG (15 mL, dried over 4 Å molecular sieve for 24 h) was stirred at 50 °C under argon atmosphere for 2 h. Hydrochloric acid (10 mL, 1%) and MTBE (10 mL) were added to the reaction mixture successively. The MTBE phase was separated, and the aqueous phase was further extracted with MTBE (10 mL × 2). The combined organic layers were dried over anhydrous sodium sulfate and concentrated in vacuo to give a residue, which was purified by column chromatography on silica gel (eluents: petroleum ether/ethyl acetate 5:1) to provide intermediate 3c and the desired 2aa.

3,5-Dimethoxy-4-hydroxybenzaldehyde (2aa): yellow solid, 154.8 mg (85% yield). The spectral data see 2.1 section.

Procedure for Scheme 6(c): a mixture of substrate 1aa (1.0 mmol) and dried Cu(AcO)$_2$ (dried in a vacuum oven at 60 °C for 10 h) and H$_2$O (4.0 mmol, 72 mg) in dry EG (15 mL, dried over 4 Å molecular sieve for 24 h) was stirred at 50 °C under argon atmosphere for 2 h. Hydrochloric acid (10 mL, 1%) and MTBE (10 mL) were added to the reaction mixture successively. The MTBE phase was separated, and the aqueous phase was further extracted with MTBE (10 mL × 2). The combined organic layers were dried over anhydrous sodium sulfate and concentrated in vacuo to give a residue, which was purified by column chromatography on silica gel (eluents: petroleum ether/ethyl acetate 5:1) to provide intermediate 3c and the desired 2aa.

3,5-Dimethoxy-4-hydroxybenzaldehyde (2aa): yellow solid, 154.8 mg (85% yield). The spectral data see 2.1 section.

Procedure for Scheme 6(d): a mixture of substrate 1aa (1.0 mmol, 168.2 mg) and dried Cu(AcO)$_2$ (0.01 mmol, 1.8 mg, dried in a vacuum oven at 60 °C for 10 h) in dry EG (2 mL, dried over 4 Å molecular sieve for 24 h) was stirred at 50 °C under 18O$_2$ for 8 h. Hydrochloric acid (4 mL, 2%) and MTBE (4 mL) were added to the reaction mixture successively. The MTBE phase was separated, and the aqueous phase was further extracted with MTBE (4 mL × 2). The combined organic layers were dried over anhydrous sodium sulfate and concentrated in vacuo to give a residue, which was purified by column chromatography on silica gel (eluents: petroleum ether/ethyl acetate 5:1).
4-((2-Hydroxyethoxy)methyl)-2,6-dimethoxyphenol (3c): yellow solid, 20.5 mg (9% yield). HRMS (EI): m/z [M⁺] calcd. for C₁₉H₁₅O₅ 228.0998, found 228.0997 (herein HRMS determined again for the mechanistic studies). Other spectral data see 2.5 section.

3,5-Dimethoxy-4-hydroxybenzaldehyde (2aa): yellow solid, 152.9 mg (83% yield), HRMS (EI): m/z [M⁺] calcd. for C₉H₁₀O₃ 184.0622, found 184.0623. Other spectral data see 2.1 section.

Procedure for Scheme 6(e): a mixture of substrate 1aa (1.0 mmol, 168.2 mg), Cu(AcO)₂ (0.01 mmol, 1.8 mg) and TEMPO (1.0 mmol, 156.3 mg) in EG (2 mL) was stirred at 50 °C under ambient air for 4 h. Hydrochloric acid (4 mL, 2%) and MTBE (4 mL) were added to the reaction mixture successively. The MTBE phase was separated, and the aqueous phase was further extracted with MTBE (4 mL × 2). The combined organic layers were dried over anhydrous sodium sulfate and concentrated in vacuo to give a residue, which was purified by column chromatography on silica gel (eluents: petroleum ether/ethyl acetate 5:1) to recover 1aa.

2,6-dimethoxy-4-methylphenol (1aa): recovery, 161.5 mg (96%).

3. References
4. Copies of Spectra for All Compounds
Elemental Composition Report

Single Mass Analysis

Tolerance = 100.0 mDa / DBE: min = -1.5, max = 100.0
Element prediction: Off
Number of isotope peaks used for i-FIT = 2

Monoisotopic Mass, Even Electron ions
15 formula(e) evaluated with 8 results within limits (up to 1 closest results for each mass)
Elements Used:
- C: 0.21
- H: 0.50
- O: 0.4

YF-JI

![Chemical Structure](image)

JYF-JA-01 1 (0.128) Cm (1:2)

<table>
<thead>
<tr>
<th>Mass</th>
<th>Calc. Mass</th>
<th>mDa</th>
<th>ppm</th>
<th>DBE</th>
<th>i-FIT</th>
<th>i-FIT (Norm)</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>183.0635</td>
<td>181.0637</td>
<td>-2.2</td>
<td>-12.0</td>
<td>4.5</td>
<td>27.2</td>
<td>0.0</td>
<td>C9 H11 O4</td>
</tr>
</tbody>
</table>

ECUST Institute of Fine Chem

02-Jan-2013
20/20/35
1: TCPS ES+ 5.36e+002
Elemental Composition Report

Single Mass Analysis
Tolerance = 100.0 mDa / DBE: min = -1.5, max = 100.0
Element prediction: Off
Number of isotope peaks used for i-FIT = 2

Monoisotopic Mass, Even Electron Ions
25 formula(e) evaluated with 15 results within limits (up to 1 closest results for each mass)
Elements Used:
C: 0-39 H: 0-60 O: 0-8

YF-11

EUST institute of Fine Chem

02-Jan-2013
20:35:36
1: TOF MS ES+
5.08e+002

Minimum: 100.0 50.0 -1.5
Maximum: 100.0 50.0 100.0

Mass Calc. Mass mDa FTM DBE i-FIT i-FIT (Norm) Formula
211.0962 211.0970 -0.8 -3.8 4.5 5.5 0.0 C11 H15 O4
Elemental Composition Report

Single Mass Analysis
Tolerance = 100.0 mDa / DBE: min = -1.5, max = 100.0
Element prediction: Off
Number of isotope peaks used for i-FIT = 2

Monoisotopic Mass, Even Electron Ions
18 formula(e) evaluated with 10 results within limits (up to 1 closest results for each mass)
Elements Used:
C: 0-21 H: 0-50 O: 0-4

YF-II
JYF-JA-C3 8 (0.323) Cm (8:10)
ECUST institute of Fine Chem

Mass Calc. Mass mDa PPM DBE i-FIT i-FIT (Norm) Formula
239.1292 239.1293 -0.1 -0.4 4.5 15.0 0.0 C13 H19 O4
Elemental Composition Report

Single Mass Analysis

Tolerance = 100.0 mDa / DBE: min = -1.5, max = 100.0
Element prediction: Off
Number of isotope peaks used for i-FIT = 2

Monoisotopic Mass, Even Electron ion

30 formula(e) evaluated with 17 results within limits (up to 1 closest results for each mass)

Elements Used:
C: 0-39 H: 0-60 O: 0-8

YF-JI

ECUST Institute of Fine Chem

JYF-JA-04 12 (0.465) Cm (7.14)

02-Jan-2013
20:40:12
2: TOF MS ESI:
1.30e+003

Minimum: -1.5
Maximum: 100.0 50.0 100.0

Mass Calc. Mass mDa FFN DBE i-FIT i-FIT (Norm) Formula
265.1446 265.1440 0.6 2.3 5.5 9.3 0.0 C15 H21 O4
Elemental Composition Report

Single Mass Analysis
Tolerance = 100.0 mDa / DBE: min = -1.5, max = 100.0
Element prediction: Off
Number of isotope peaks used for i-FIT = 2

Monoisotopic Mass, Even Electron Ions
30 formula(e) evaluated with 17 results within limits (up to 1 closest results for each mass)

Elements Used:
C: 0-39 H: 0-60 O: 0-8

YF-JI

ECUST Institute of Fine Chem

JYF-JA-05 9 (0.394) Crn (8.12)

02-Jan-2013
20:42:48
2: TOF MS ES-
3.48e+003

<table>
<thead>
<tr>
<th>Mass</th>
<th>Calc. Mass</th>
<th>mDa</th>
<th>FBM</th>
<th>DBE</th>
<th>i-FIT</th>
<th>i-FIT (Norm)</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>265.1436</td>
<td>265.1440</td>
<td>-0.4</td>
<td>-1.5</td>
<td>5.5</td>
<td>7.9</td>
<td>0.0</td>
<td>C15 H21 O4</td>
</tr>
</tbody>
</table>
Elemental Composition Report

Single Mass Analysis
Tolerance = 100.0 mDa
DBE: min = -1.5, max = 100.0
Element prediction: Off
Number of isotope peaks used for i-FIT = 2

Monoisotopic Mass, Even Electron ions
22 formula(s) evaluated with 16 results within limits (up to 1 closest results for each mass)

Elements Used:
C: 0-39 H: 0-60 O: 0-8

YF-JI

ECUST Institute of Fire Chem

JYF-JA-065 (0.274) Cm (5.6)

02-Jan-2013
20:45:03
1: TOF MS ESI+
1.40e+003

Mass Calc. Mass mDa PPB DBE i-FIT F-HIT (Norm) Formula
197.0804 197.0814 -0.0 -5.1 4.5 14.0 0.0 Cl0 H13 O4
Elemental Composition Report

Single Mass Analysis

Tolerance = 100.0 mDa / DBE: min = -1.5, max = 100.0
Element prediction: Off
Number of isotope peaks used for i-FIT = 2

Monoisotopic Mass, Even Electron Ions
25 formula(e) evaluated with 16 results within limits (up to 1 closest results for each mass)
Elements Used:
C: 0-39 H: 0-60 O: 0-8

YF-JI
ECUST institute of Fine Chem

JYF-JA-02 19 (0.668) Cm (19/20)

1: TDF MSE+ 5.08e+002

Minimum: -1.5
Maximum: 100.0 50.0 100.0

<table>
<thead>
<tr>
<th>Mass</th>
<th>Calc. Mass</th>
<th>mDa</th>
<th>PPM</th>
<th>DBE</th>
<th>i-FIT</th>
<th>i-FIT (Norm)</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>211.0962</td>
<td>211.0970</td>
<td>-0.8</td>
<td>-3.6</td>
<td>4.5</td>
<td>5.5</td>
<td>0.0</td>
<td>C11 H15 O4</td>
</tr>
</tbody>
</table>
Elemental Composition Report

Single Mass Analysis
Tolerance = 100.0 mDa / DBE: min = -1.5, max = 100.0
Element prediction: Off
Number of isotope peaks used for i-FIT = 2

Monoisotopic Mass, Even Electron Ions
29 formula(c) evaluated with 13 results within limits (up to 1 closest results for each mass)
Elements Used
C: 0-39 H: 0-60 O: 0-8
YF-JI
ECUST institute of Fine Chem

JVF-JA-06 B (0.323) Cm (7.10)

02-Jan-2013
20:57:01
1: TOP MS ES+
9.47e+002

<table>
<thead>
<tr>
<th>Mass</th>
<th>Calc. Mass</th>
<th>mDa</th>
<th>PPM</th>
<th>DBE</th>
<th>i-FIT</th>
<th>i-FIT (Norm)</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>235.1693</td>
<td>235.1699</td>
<td>-0.5</td>
<td>-2.1</td>
<td>4.5</td>
<td>22.1</td>
<td>0.0</td>
<td>C15 H23 O2</td>
</tr>
</tbody>
</table>
Elemental Composition Report

Single Mass Analysis
Tolerance = 100.0 mDa / DBE min = -1.5, max = 100.0
Element prediction: Off
Number of isotope peaks used for i-FIT = 2

Monoisotopic Mass, Even Electron Ions
20 formula(e) evaluated with 12 results within limits (up to 1 closest results for each mass)
Elements Used:
C: 0-39 H: 0-60 O: 0-8

YPJI
ECUST Institute of Fine Chem

JYF-JA-08 33 (1.120) Cm (21:39)

Minimum: 100.0 80.0 100.0
Maximum: -1.5

<table>
<thead>
<tr>
<th>Mass</th>
<th>Calc. Mass</th>
<th>mDa</th>
<th>PPM</th>
<th>DBE</th>
<th>i-FIT</th>
<th>i-FIT (Norm)</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>151.0750</td>
<td>151.0759</td>
<td>-0.9</td>
<td>-6.0</td>
<td>4.5</td>
<td>13.7</td>
<td>0.0</td>
<td>C9 H11 O2</td>
</tr>
</tbody>
</table>

02-Jan-2013
20:46:42
1: TOF MS ES+ 1.23e+003
Elemental Composition Report

Single Mass Analysis
Tolerance = 100.0 mDa / DBE: min = -1.5, max = 100.0
Element prediction: Off
Number of isotope peaks used for i-FIT = 2

Monoisotopic Mass, Even Electron ions
15 formula(e) evaluated with 10 results within limits (up to 1 closest results for each mass)
Elements Used:
C: 0-37 H: 0-50 O: 0-4

YF-JI
ECUST institute of Fine Chem

JYF-JA-10 10 (0.396) Cm (9.10)

02-Jan-2013
21 00:40
1: TOF MS ES-
2.95e+003

Mass Calc. Mass mDa PPM DBE i-FIT i-FIT (Norm) Formula
193.1234 193.1229 0.5 2.6 4.5 24.0 0.0 C12 H17 O2
Elemental Composition Report

Single Mass Analysis

Tolerance = 100.0 mDa / DBE: min = -1.5, max = 100.0
Element prediction: Off
Number of isotope peaks used for I-FIT = 2

Monoisotopic Mass, Even Electron ions
21 formula(c) evaluated with 13 results within limits (up to 1 closest results for each mass)
Elements Used:
C: 0-39 H: 0-60 O: 0-8

ECUST institute of Fine Chem

JYF-JA-11 1B (0.643) Cm (17.21)

<table>
<thead>
<tr>
<th>Mass</th>
<th>Calc. Mass</th>
<th>mDa</th>
<th>FBK</th>
<th>DBE</th>
<th>I-FIT</th>
<th>I-FIT (Norm)</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>167.0706</td>
<td>167.0708</td>
<td>-0.2</td>
<td>-1.2</td>
<td>4.5</td>
<td>16.7</td>
<td>0.0</td>
<td>C9 H11 O3</td>
</tr>
</tbody>
</table>

02-Jan-2013
21:03:40
1: TOF MS ES+
1.53e+003
Elemental Composition Report

Single Mass Analysis
Tolerance = 100.0 mDa / DBE: min = -1.5, max = 100.0
Element prediction: Off
Number of isotope peaks used for i-FIT = 2

Monoisotopic Mass, Even Electron Ions
21 formula(e) evaluated with 15 results within limits (up to 1 closest results for each mass)
Elements Used:
C: 0-39 H: 0-60 O: 0-8

ECUST institute of Fine Chem

02-Jan-2013
21:06:26
1: TOF MS ES+
2.52e+003

Minimum:
181.0857
181.0865

Maximum:
181.0862
182.0901

Mass Calc. Mass mDa FPP DBE i-FIT i-FIT (Norm) Formula
181.0862 181.0865 -0.3 -1.7 4.5 28.7 0.0 C10 H13 O3
Elemental Composition Report

Single Mass Analysis

- Tolerance = 100.0 mDa / DBE: min = -1.5, max = 100.0
- Element prediction: Off
- Number of isotope peaks used for i-FIT = 2

Monoisotopic Mass, Even Electron Ions

24 formula(e) evaluated with 15 results within limits (up to 1 closest results for each mass)

Elements Used:

- C: 0-39
- H: 0-60
- O: 0-8

YF-J1

JYF-JA-13 12 (0.44B) Cm (10:14)

Minimum:

- Tolerance: 100.0
- DBE: min = -1.5

Maximum:

- Tolerance: 100.0
- DBE: max = 100.0

Mass

<table>
<thead>
<tr>
<th>Calcd. Mass</th>
<th>mDa</th>
<th>PPM</th>
<th>DBE</th>
<th>i-FIT</th>
<th>i-FIT (Norm)</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>195.1020</td>
<td>195.1021</td>
<td>-0.1</td>
<td>-0.5</td>
<td>4.5</td>
<td>23.3</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Elemental Composition Report

Single Mass Analysis

Tolerance = 100.0 mDa / DBE: min = -1.5, max = 100.0
Element prediction: Off
Number of isotope peaks used for i-FIT = 2

Monoisotopic Mass, Even Electron Ions
29 formula(c) evaluated with 16 results within limits (up to 1 closest results for each mass)

Elements Used:
C: 0-39 H: 0-60 O: 0-8

YF-JI

ECUST institute of Fine Chem

JYF-JA-1422 (0.766) Cm (21.22)

02-Jan-2013
21:11:34
1: TOF MS ES+
3.57e+003

<table>
<thead>
<tr>
<th>Mass</th>
<th>Calc. Mass</th>
<th>mDa</th>
<th>PPM</th>
<th>DBE</th>
<th>i-FIT</th>
<th>i-FIT (Norm)</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>243.1012</td>
<td>243.1021</td>
<td>-0.9</td>
<td>-3.7</td>
<td>9.5</td>
<td>23.7</td>
<td>0.0</td>
<td>C15 H15 O3</td>
</tr>
</tbody>
</table>
Elemental Composition Report

Single Mass Analysis
Tolerance = 100.0 mDa / DBE: min = -1.5, max = 100.0
Element prediction: Off
Number of isotope peaks used for i-FIT = 2

Monoisotopic Mass, Even Electron Ions
21 formula(e) evaluated with 11 results within limits (up to 1 closest results for each mass)
Elements Used:
C: 0-37 H: 0-50 O: 0-4

YF-JI

ECUST institute of Fine Chem

JYF-JA-17 7 (0.269) Cm: (5:7)

02-Jan-2013
21:16:48
1: TOF MS ES+
3.00e+003

<table>
<thead>
<tr>
<th>Mass</th>
<th>Calc. Mass</th>
<th>mDa</th>
<th>PPM</th>
<th>DBE</th>
<th>i-FIT</th>
<th>i-FIT (Norm)</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>369.2045</td>
<td>369.2066</td>
<td>-2.1</td>
<td>-5.7</td>
<td>9.5</td>
<td>14.8</td>
<td>0.0</td>
<td>C23 H29 O4</td>
</tr>
</tbody>
</table>
Elemental Composition Report

Single Mass Analysis
Tolerance = 100.0 mDa / DBE: min = -1.5, max = 100.0
Element prediction: Off
Number of isotope peaks used for i-FIT = 2

Monoisotopic Mass, Even Electron Ions
24 formula(s) evaluated with 17 results within limits (up to 1 closest results for each mass)

Elements Used:
C: 0-39 H: 0-60 O: 0-8

YF-JI

ECUST Institute of Fine Chem

JYF-JA-16 6 (0.275) Cm (5.5)

Minimum: 100.0 50.0 100.0

Mass Calc. Mass mDa PPM DBE i-FIT i-FIT (Norm) Formula
213.0763 213.0763 -0.3 -1.4 4.5 14.1 0.0 C10 H13 O5

02-Jan-2013 21:14:32
1: TOF MS ES+
1.00e+003
Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 mDa / DAE: min = -1.5, max = 50.0

Monoisotopic Mass, Odd and Even Electron Ions

21 formula(e) evaluated with 5 results within limits (up to 50 closest results for each mass)

Elements Used:
C: 0-10 H: 0-12 O: 0-4

<table>
<thead>
<tr>
<th>Mass</th>
<th>RA</th>
<th>Calc. Mass</th>
<th>mDa</th>
<th>PPM</th>
<th>DAE</th>
<th>Score</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>196.0737</td>
<td>51.69</td>
<td>196.0735</td>
<td>0.1</td>
<td>0.5</td>
<td>5.0</td>
<td>1</td>
<td>C10 H12 O4</td>
</tr>
</tbody>
</table>
Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0

Monoisotopic Mass, Odd and Even Electron Ions

21 formula(e) evaluated with 5 results within limits (up to 50 closest results for each mass)

Elements Used:

C: 0-12 H: 0-16 O: 0-4

Minimum: -1.5
Maximum: 100.00 5.0 10.0 50.0

<table>
<thead>
<tr>
<th>Mass</th>
<th>RA</th>
<th>Calc. Mass</th>
<th>mDa</th>
<th>PPM</th>
<th>DBE</th>
<th>Score</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>224.1047</td>
<td>100.00</td>
<td>224.1049</td>
<td>-0.2</td>
<td>-0.9</td>
<td>5.0</td>
<td>1</td>
<td>C12 H16 O4</td>
</tr>
</tbody>
</table>
Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0

Monoisotopic Mass, Odd and Even Electron Ions

21 formula(e) evaluated with 5 results within limits (up to 50 closest results for each mass)

Elements Used:

C: 0-14 H: 0-20 O: 0-4

Minimum: -1.5
Maximum: 100.00 5.0 10.0 50.0

<table>
<thead>
<tr>
<th>Mass</th>
<th>RA</th>
<th>Calc. Mass</th>
<th>mDa</th>
<th>PPM</th>
<th>DBE</th>
<th>Score</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>252.1361</td>
<td>65.18</td>
<td>252.1362</td>
<td>-0.1</td>
<td>-0.4</td>
<td>5.0</td>
<td>1</td>
<td>C14 H20 O4</td>
</tr>
</tbody>
</table>
Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0

Monoisotopic Mass, Odd and Even Electron ions

21 formula(e) evaluated with 5 results within limits (up to 50 closest results for each mass)

Elements Used:

| C | 0-16 | H | 0-24 | O | 0-4 |

Mininum:

-1.5

Maximum:

100.00 5.0 10.0 50.0

<table>
<thead>
<tr>
<th>Mass</th>
<th>RA</th>
<th>Calc. Mass</th>
<th>mDa</th>
<th>PPM</th>
<th>DBE</th>
<th>Score</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>280.1676</td>
<td>55.00</td>
<td>280.1675</td>
<td>0.1</td>
<td>0.4</td>
<td>5.0</td>
<td>1</td>
<td>C16H24O4</td>
</tr>
</tbody>
</table>
Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0

Monoisotopic Mass, Odd and Even Electron Ions

21 formula(e) evaluated with 5 results within limits (up to 50 closest results for each mass)

Elements Used:

C: 0-13 H: 0-18 O: 0-3

Minimum: -1.5

Maximum: 100.00 5.0 10.0 50.0

<table>
<thead>
<tr>
<th>Mass</th>
<th>RA</th>
<th>Calc. Mass</th>
<th>mDa</th>
<th>PPM</th>
<th>DBE</th>
<th>Score</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>222.1254</td>
<td>32.66</td>
<td>222.1256</td>
<td>-0.2</td>
<td>-0.9</td>
<td>5.0</td>
<td>1</td>
<td>C13 H18 O3</td>
</tr>
</tbody>
</table>
Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0

Monoisotopic Mass, Odd and Even Electron Ions

21 formula(e) evaluated with 5 results within limits (up to 50 closest results for each mass)

Elements Used:

C: 0-14 H: 0-20 O: 0-3

<table>
<thead>
<tr>
<th>Mass</th>
<th>RA</th>
<th>Calc. Mass</th>
<th>mDa</th>
<th>PPM</th>
<th>DBE</th>
<th>Score</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>236.1414</td>
<td>43.88</td>
<td>236.1412</td>
<td>0.2</td>
<td>0.8</td>
<td>5.0</td>
<td>1</td>
<td>C14 H20 O3</td>
</tr>
</tbody>
</table>
Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0

Monoisotopic Mass, Odd and Even Electron Ions

2.1 formula(e) evaluated with 5 results within limits (up to 50 closest results for each mass)

Elements Used:

C: 0-15 H: 0-22 O: 0-8

Minimum: -1.5

Maximum: 100.00 5.0 10.0 50.0

<table>
<thead>
<tr>
<th>Mass</th>
<th>RA</th>
<th>Calc. Mass</th>
<th>mDa</th>
<th>PPM</th>
<th>DBE</th>
<th>Score</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>250.1570</td>
<td>44.79</td>
<td>250.1560</td>
<td>0.1</td>
<td>0.4</td>
<td>5.0</td>
<td>1</td>
<td>C15 H22 O3</td>
</tr>
</tbody>
</table>
Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0

Monoisotopic Mass, Odd and Even Electron Ions

23 formula(e) evaluated with 6 results within limits (up to 50 closest results for each mass)

Elements Used:

<table>
<thead>
<tr>
<th>C: 0-10</th>
<th>H: 0-12</th>
<th>O: 0-2</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Mass</th>
<th>RA</th>
<th>Calc. Mass</th>
<th>mDa</th>
<th>PPM</th>
<th>DBE</th>
<th>Score</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>164.0838</td>
<td>40.80</td>
<td>164.0837</td>
<td>0.1</td>
<td>0.4</td>
<td>5.0</td>
<td>1</td>
<td>C10H12O2</td>
</tr>
</tbody>
</table>
Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0

Monoisotopic Mass, Odd and Even Electron Ions

21 formula(e) evaluated with 5 results within limits (up to 50 closest results for each mass)

Elements Used:

C: 0-11 H: 0-14 O: 0-4

<table>
<thead>
<tr>
<th>Mass</th>
<th>RA</th>
<th>Calc. Mass</th>
<th>mDa</th>
<th>PPM</th>
<th>DBE</th>
<th>Score</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>210.0893</td>
<td>29.89</td>
<td>210.0892</td>
<td>0.1</td>
<td>0.5</td>
<td>5.0</td>
<td>1</td>
<td>C11 H14 O4</td>
</tr>
</tbody>
</table>
Elemental Composition Report

Single Mass Analysis:

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0

Monoisotopic Mass, Odd and Even Electron Ions

21 formula(e) evaluated with 5 results within limits (up to 50 closest results for each mass)

Elements Used:

C: 0-12 H: 0-16 O: 0-4

Micromass GCT

<table>
<thead>
<tr>
<th>Mass</th>
<th>RA</th>
<th>Calc. Mass</th>
<th>mDa</th>
<th>PPM</th>
<th>DBE</th>
<th>Score</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>224.1047</td>
<td>0.94</td>
<td>224.1049</td>
<td>-0.2</td>
<td>-0.7</td>
<td>5.0</td>
<td>1</td>
<td>C12 H16 O4</td>
</tr>
</tbody>
</table>
Elemental Composition Report

Single Mass Analysis
Tolerance = 30.0 mDa / DBE: min = -1.5, max = 100.0
Element prediction: Off
Number of isotope peaks used for i-FIT = 2

Monoisotopic Mass, Even Electron Ions
6 formula(s) evaluated with 1 results within limits (up to 1 closest results for each mass)

Elements Used
C: 0-13 H: 0-80 O: 0-4

ECUST institute of Fine Chem

JYF-JG-4 36 (0.311) Cn (50.37)

Minimum:
Maximum:

Mass Calc. Mass mDa PPm DBE i-FIT i-FIT (Norm) Formula
239.1277 239.1283 -0.6 -2.5 4.5 19.7 0.0 C13 H15 O4
Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0

Monoisotopic Mass, Odd and Even Electron Ions

21 formula(e) evaluated with 5 results within limits (up to 50 closest results for each mass)

Elements Used:

C: 0-15 H: 0-14 O: 0-4

<table>
<thead>
<tr>
<th>Mass</th>
<th>RA</th>
<th>Calc. Mass</th>
<th>mDa</th>
<th>PPM</th>
<th>DBE</th>
<th>Score</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>258.0896</td>
<td>88.21</td>
<td>258.0892</td>
<td>0.4</td>
<td>1.5</td>
<td>9.0</td>
<td>1</td>
<td>C15 H14 O4</td>
</tr>
</tbody>
</table>
Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0

Monoisotopic Mass, Odd and Even Electron Ions

18 formula(e) evaluated with 7 results within limits (up to 50 closest results for each mass)

Elements Used:

C: 0-12 H: 0-16 O: 0-2

<table>
<thead>
<tr>
<th>Mass</th>
<th>RA</th>
<th>Calc. Mass</th>
<th>mDa</th>
<th>PPM</th>
<th>DBE</th>
<th>Score</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.1151</td>
<td>6.35</td>
<td>192.1150</td>
<td>0.1</td>
<td>0.4</td>
<td>5.0</td>
<td>1</td>
<td>C12 H16 O2</td>
</tr>
</tbody>
</table>
Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0

Monoisotopic Mass, Odd and Even Electron Ions

27 formula(e) evaluated with 6 results within limits (up to 50 closest results for each mass)

Elements Used:

C: 0-13 H: 0-18 O: 0-2

<table>
<thead>
<tr>
<th>Mass</th>
<th>RA</th>
<th>Calc. Mass</th>
<th>mDa</th>
<th>PPM</th>
<th>DBE</th>
<th>Score</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>206.1304</td>
<td>3.12</td>
<td>206.1307</td>
<td>-0.3</td>
<td>-1.4</td>
<td>5.0</td>
<td>1</td>
<td>C13 H18 O2</td>
</tr>
</tbody>
</table>
Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0

Monoisotopic Mass, Odd and Even Electron Ions

54 formula(e) evaluated with 10 results within limits (up to 50 closest results for each mass)

Elements Used:

C: 0-16 H: 0-16 O: 0-2

Minima:

Mass RA Calc. Mass mDa PPM DBE Score Formula
240.1149 0.64 240.1150 -0.1 -0.5 9.0 1 C16 H16 O2
Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0

Monoisotopic Mass, Odd and Even Electron Ions

27 formula(e) evaluated with 6 results within limits (up to 50 closest results for each mass)

Elements Used:

C: 0-17 H: 0-18 O: 0-2

Minimum: 3.00 -1.5

Maximum: 100.00 5.0 5.0 50.0

<table>
<thead>
<tr>
<th>Mass</th>
<th>RA</th>
<th>Calc. Mass</th>
<th>mDa</th>
<th>PPM</th>
<th>DBE</th>
<th>Score</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>254.1309</td>
<td>8.68</td>
<td>254.1307</td>
<td>0.2</td>
<td>0.9</td>
<td>9.0</td>
<td>1</td>
<td>C17 H18 O2</td>
</tr>
</tbody>
</table>
Elemental Composition Report

Single Mass Analysis

Tolerance = 100.0 mDa / DBE: min = -1.5, max = 100.0
Element prediction: Off
Number of isotope peaks used for i-FIT = 2

Monoisotopic Mass, Even Electron Ions
67 formula(e) evaluated with 11 results within limits (up to 1 closest results for each mass)
Elements Used:
C: 0-30 H: 0-80 O: 0-8 Br: 0-2

<table>
<thead>
<tr>
<th>Mass</th>
<th>Calc. Mass</th>
<th>mDa</th>
<th>PPM</th>
<th>DBE</th>
<th>i-FIT</th>
<th>i-FIT (Norm)</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>276.9490</td>
<td>276.9500</td>
<td>-1.0</td>
<td>-3.6</td>
<td>5.5</td>
<td>26.6</td>
<td>0.0</td>
<td>C7 H3 Cl2 Br2</td>
</tr>
</tbody>
</table>
Elemental Composition Report

Single Mass Analysis

- **Tolerance**: 30.0 mDa
- **DBE**: min = -1.5, max = 100.0
- **Element prediction**: Off
- **Number of isotope peaks used for i-FIT**: 2

Monoisotopic Mass, Even Electron Ions

48 formula(e) evaluated with 7 results within limits (up to 1 closest result for each mass)

Elements Used:

<table>
<thead>
<tr>
<th>C</th>
<th>0-35</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>0-80</td>
</tr>
<tr>
<td>O</td>
<td>0-5</td>
</tr>
<tr>
<td>Cl</td>
<td>0-3</td>
</tr>
</tbody>
</table>

ECUST Institute of Fine Chem

JYF-DJL-11 66 (2.237) Cm (69.72)

Minimum: -1.5

Maximum: 30.0 50.0 100.0

<table>
<thead>
<tr>
<th>Mass</th>
<th>Calc. Mass</th>
<th>mDa</th>
<th>PPM</th>
<th>DBE</th>
<th>i-FIT</th>
<th>i-FIT (Norm)</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>188.9502</td>
<td>188.9510</td>
<td>-0.8</td>
<td>-4.2</td>
<td>5.1</td>
<td>73.2</td>
<td>0.0</td>
<td>C7 H3 O2 Cl2</td>
</tr>
</tbody>
</table>

16-Sep-2013

15:42:28

2. Tof N8 E5- E794-603
Elemental Composition Report

Single Mass Analysis
Tolerance = 30.0 mDa / DBE: min = -8.8, max = 100.0
Element prediction: Off
Number of isotope peaks used for i-FIT = 2

Monoisotopic Mass, Even Electron Ions
27 formula(s) evaluated with 4 results within limits (up to 1 closest results for each mass)
Elements Used:
C: 0-7 H: 0-80 O: 0-2 Br: 0-1 F: 0-3

VF-JI
ECUST Institute of Fine Chem

JYF-JG-1 189 (1.307) 184/186

Mass Calc. Mass mDa DBE i-FIT i-FIT (Norm) Formula
216.9281 216.9300 -1.9 -8.8 5.5 5.8 0.0 C7 H7 O2 Br F

Minimum: 30.0 50.0 100.0
Maximum: 15-Sep-2013 19:32:01

Elemental Composition Report

Single Mass Analysis
Tolerance = 100.0 mDa / DBE: min = -1.5, max = 100.0
Element prediction: Off
Number of isotope peaks used for i-FIT = 2

Monoisotopic Mass, Even Electron ions
50 formula(e) evaluated with 21 results within limits (up to 1 closest results for each mass)
Elements Used:
C: 0-39 H: 0-60 O: 0-8 Br: 0-2

YF-JI
ECUST institute of Fine Chem
02-Jan-2013
21:47:30
2: TOF MS ES-
5.51e+003

JYF-JA-102 47 (1.550) Cm (41:47)

<table>
<thead>
<tr>
<th>Mass</th>
<th>Calc. Mass</th>
<th>mDa</th>
<th>PPM</th>
<th>DBE</th>
<th>i-FIT</th>
<th>i-FIT (Norm)</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>228.9473</td>
<td>228.9500</td>
<td>-2.7</td>
<td>-11.8</td>
<td>5.5</td>
<td>14.0</td>
<td>0.0</td>
<td>C8 H6 Br</td>
</tr>
</tbody>
</table>
Elemental Composition Report

Single Mass Analysis
Tolerance = 30.0 mDa / DBE: min = -1.5, max = 100.0
Element prediction: Off
Number of isotope peaks used for i-FIT = 2

Monoisotopic Mass, Even Electron Ions
20 formula(e) evaluated with 4 results within limits (up to 1 closest results for each mass)

Elements Used:
C: 0-8 H: 0-80 O: 0-3 F: 0-3

YF-JI
15-Sep-2013
15:53:36
1: TOF MS ES+ 1.88e+003

JYF-JG-2 55 (0.425) Cm (52/62)

164.0669 165.0637 166.0651 168.0726 169.0106 170.0378 171.0092 171.0447 171.0457 171.1492 172.0478 173.0287

Minimum: 164.0669
Maximum: 173.0287

Mass Calc. Mass mDa ppm DBE i-FIT i-FIT (Norm) Formula
171.0447 171.0457 -1.0 -5.8 4.5 21.5 0.0 C8 H8 O3 F
Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0

Monoisotopic Mass, Odd and Even Electron Ions

102 formula(e) evaluated with 22 results within limits (up to 50 closest results for each mass)

Elements Used:
C: 0-9 H: 0-7 N: 0-1 O: 0-2

Minimum: 3.00 -1.5
Maximum: 100.00 5.0 5.0 50.0

Mass RA Calc. Mass mDa PPM DBE Score Formula
177.0424 100.00 177.0426 -0.2 -1.1 7.0 1 C9 H7 N O3
Elemental Composition Report

Single Mass Analysis
Tolerance = 30.0 mDa / DBE: min = -1.5, max = 100.0
Element prediction: Off
Number of isotope peaks used for i-FIT = 2

Monoisotopic Mass, Even Electron Ions
17 formula(e) evaluated with 1 results within limits (up to 1 closest results for each mass)
Elements Used:
C: 0-10 H: 0-60 O: 0-3 Br: 0-2

YF-JL
ECUST Institute of Fine Chem
15-Sep-2013
15:59:47

JVF-JG-3 109 (0.759) Cm (105-116)

Minimum:
Mass Calc. Mass mDa PPM DBE i-FIT i-FIT (Norm) Formula
292.9817 292.9813 0.4 1.4 4.5 6.2 0.0 C9 H7 O2 Br2

Maximum:
30.0 30.0 100.0

Page 1
Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0

Monoisotopic Mass, Odd and Even Electron Ions

68 formula(e) evaluated with 20 results within limits (up to 50 closest results for each mass)

Elements Used:

C: 0-14 H: 0-14 O: 0-2

Minimum: 3.00 -1.5

Maximum: 100.00 5.0 5.0 50.0

Mass RA Calc. Mass mDa PPM DBE Score Formula
214.0992 100.00 214.0994 -0.2 -0.8 8.0 1 C14 H14 O2
Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0

Monoisotopic Mass, Odd and Even Electron Ions

19 formula(e) evaluated with 9 results within limits (up to 50 closest results for each mass)

Elements Used:

C: 0-7 H: 0-6 O: 0-2

Minimum: 3.00 -1.5

Maximum: 100.00 5.0 10.0 50.0

<table>
<thead>
<tr>
<th>Mass</th>
<th>RA</th>
<th>Calc. Mass</th>
<th>mDa</th>
<th>PPM</th>
<th>DBE</th>
<th>I-FIT</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>122.0367</td>
<td>84.79</td>
<td>122.0368</td>
<td>-0.1</td>
<td>-0.8</td>
<td>5.0</td>
<td>3.5</td>
<td>C7 H6 O2</td>
</tr>
</tbody>
</table>
Elemental Composition Report

Single Mass Analysis
- **Tolerance**: 30.0 mDa / **DBE**: min = -1.5, max = 100.0
- **Element prediction**: Off
- **Number of isotope peaks used for i-FIT**: 2

Monoisotopic Mass, Even Electron Ions
- 7 formula(e) evaluated with 1 results within limits (up to 1 best isotopic matches for each mass)
- **Elements Used**:
 - C: 0-7
 - H: 0-5
 - O: 0-2
 - Br: 0-2

Ji-YF

ECUST institute of Fine Chem

JYF-JA-19 235 (1.746) Cm (253/253)

![Graph with m/z values and mass calculations]

Minimum: 196.9359
Maximum: 212.8351

<table>
<thead>
<tr>
<th>Mass</th>
<th>Calc. Mass</th>
<th>ΔDa</th>
<th>PPM</th>
<th>DBE</th>
<th>i-FIT</th>
<th>i-FIT (Norm)</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>196.9359</td>
<td>196.9395</td>
<td>-3.6</td>
<td>-18.1</td>
<td>5.5</td>
<td>16.9</td>
<td>0.0</td>
<td>C7 H4 O2 Br</td>
</tr>
</tbody>
</table>
Elemental Composition Report

Single Mass Analysis
Tolerance = 100.0 mDa / DBE: min = -1.5, max = 100.0
Element prediction: Off
Number of isotope peaks used for i-FIT = 2

Monoisotopic Mass, Even Electron Ions
33 formula(e) evaluated with 17 results within limits (up to 1 closest results for each mass)
Elements Used:
C: 0.39 H: 0.50 O: 0.8

YF-JI
JYF-JA-105 16 (0.509) Cm (1:16)

Minimum: 100.0 50.0 100.0
Maximum: -1.5

Mass Calc. Mass mDa PPM DBE i-FIT i-FIT (Norm) Formula
275.1293 275.1293 0.0 0.0 7.5 16.4 0.0 Cl6 H19 O1
Elemental Composition Report

Single Mass Analysis

Tolerance = 100.0 mDa
DBE: min = -1.5, max = 100.0
Element prediction: Off
Number of isotope peaks used for i-FIT = 2

Monoisotopic Mass, Even Electron Ions

65 formula(s) evaluated with 35 results within limits (up to 1 closest results for each mass)

Elements Used:

C: 0-39
H: 0-80
O: 0-8
N: 0-1

YF-Jl
ECUST Institute of Fine Chem

JYF-JA-21 14 (0.220) Cm (13.20)

<table>
<thead>
<tr>
<th>Mass</th>
<th>Calc. Mass</th>
<th>mDa</th>
<th>PPM</th>
<th>DBE</th>
<th>i-FIT</th>
<th>i-FIT (Norm)</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>251.0894</td>
<td>251.0895</td>
<td>-0.1</td>
<td>-0.4</td>
<td>3.5</td>
<td>9.4</td>
<td>0.0</td>
<td>Cl1 K16 O5 Na</td>
</tr>
</tbody>
</table>
Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0

Monoisotopic Mass, Odd and Even Electron ions

138 formula(e) evaluated with 16 results within limits (up to 50 closest results for each mass)

Elements Used:

<table>
<thead>
<tr>
<th>C</th>
<th>O-11</th>
<th>H: O-15</th>
<th>O: 0-5</th>
</tr>
</thead>
</table>

Minimum: -1.5

Maximum: 100.0 5.0 10.0 50.0

<table>
<thead>
<tr>
<th>Mass</th>
<th>RA</th>
<th>Calc. Mass</th>
<th>mDa</th>
<th>PPM</th>
<th>DBE</th>
<th>Score</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>228.0997</td>
<td>53.31</td>
<td>228.0998</td>
<td>-0.1</td>
<td>-0.4</td>
<td>4.0</td>
<td>8.2</td>
<td>C11 H16 O5</td>
</tr>
</tbody>
</table>
Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0

Monoisotopic Mass, Odd and Even Electron Ions

21 formula(e) evaluated with 5 results within limits (up to 50 closest results for each mass)

Elements Used:

C: 0.9 H: 0-10 16O: 0-4 18O: 0-1

Minimum: 2.00 -1.5

Maximum: 100.00 7.1 10.0 50.0

<table>
<thead>
<tr>
<th>Mass</th>
<th>RA</th>
<th>Calc. Mass</th>
<th>mDa</th>
<th>PPM</th>
<th>DBE</th>
<th>I - FIT</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>182.0578</td>
<td>28.77</td>
<td>182.0579</td>
<td>-0.1</td>
<td>-0.5</td>
<td>5.0</td>
<td>245.6</td>
<td>C9 H10 16O4</td>
</tr>
<tr>
<td>184.0623</td>
<td>100.00</td>
<td>184.0612</td>
<td>0.1</td>
<td>0.5</td>
<td>5.0</td>
<td>1.5</td>
<td>C9 H10 16O3 18O</td>
</tr>
</tbody>
</table>