Electronic Supplementary Information

Cobalt-modified molybdenum carbide as an efficient catalyst for chemoselective reduction of aromatic nitro compounds[†]

Zhongkui Zhao,* Hongling Yang, and Yu Li

State Key Laboratory of Fine Chemicals, Department of Catalysis Chemistry and Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China; E-mail: <u>zkzhao@dlut.edu.cn</u>

Fig. S1 XRD patterns of (a) 25%Mo₂C/AC (b) 2.5%Cu 25%Mo₂C/AC (c) 2.5%Cr 25%Mo₂C/AC (d) 2.5%Fe 25%Mo₂C/AC (e) 2.5%Co 25%Mo₂C/AC and (f) 2.5%Ni 25%Mo₂C/AC.

Fig. S2 The XPS spectrum of Co 2p in the Co-Mo₂C/AC and Mo₂C/AC catalysts.

Fig. S3 H₂-TPR profiles of Co₃O₄/AC, MoO₃/AC and Co₃O₄.-MoO₃/AC.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

Fig. S4 Degree of sensitivity of GC for reaction mixture: (a) Typical GC of reaction mixture; (b) GC of the standard solution containing nitrosobenzene, aniline, and phenylhydroxylamine with the 4, 4 and 2 ppm of concentrations, respectively; (c) the amplified GC of (a).

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

Fig. S5 GC of the reaction mixture while the nitrobenzene is used as substrate: (a) before reaction; (b) after reaction.

Fig. S6 GC of the reaction mixture while the nitrosobenzene is used as substrate: (a) before reaction; (b) after reaction.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

Fig. S7 GC of the reaction mixture while the phenylhydroxylamine is used as substrate: (a) before reaction; (b) after reaction.

Entry	Catalyst	Reaction time (h)	Sel./Yield $(\%)^b$	
1	1.5%Co25%Mo ₂ C/AC	1	100/75	
2	2.5%Co25%Mo ₂ C/AC	1	100/84.4	
3	3.0%Co25%Mo ₂ C/AC	1	100/82	
3	3.5%Co25%Mo ₂ C/AC	1	100/78	
4	5.0%Co25%Mo ₂ C/AC	1	100/72	

Table S1 Different loading of the catalysts for the performance of the reduction of nitrobenzene^a

^{*a*} Reaction conditions: 94 mg catalyst, 1 mmol nitrobenzene, 2 equivalent hydrazine hydrate; ^{*b*} the products were detected by GC-MS and ¹H-NMR.

Electronic Supplementary Material (ESI) for Green Chemistry This journal is C The Royal Society of Chemistry 2013

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

Table S2 Summary on	the reduction	of various	substituted	nitrobenzenes ^a

Entry	Substrate	Product	Hydrazine	Reaction	Sel./Yield
			equiv.	time(h)	$(\%)^{b}$
1	NO ₂	NH ₂	2	1	100/84.4
2	NO ₂	NH ₂	2.5	1	100/97.4
3	NO ₂	NH ₂	3	1	100/100
4	NO ₂	NH ₂	2	2	100/100
5		NH ₂	6	1	100/100
	CI	CI			
6	NO ₂		6	1	100/100
	CI	CI			
7	NO ₂	NH2	6	1	100/100
8			6	1	100/100
9	NO ₂		6	1	100/100
	ОН	ОН	Ū		100/100
10	NO ₂	NH ₂	8	1	95.2/63.8
11	NO ₂	NH ₂	7	3	100/100
				-	
	OH	OH			

Electronic Supplementary Material (ESI) for Green Chemistry This journal is o The Royal Society of Chemistry 2013

	-				
12	NO ₂	NH ₂	1	1	100/100
	[СНО	[СНО			
13		NH ₂	6	1	100/100 ^c
14	COOH NO₂	соон NH2	6	1	100/100
14			0	1	100/100
1.5	осн ³	όсн₃	<i>c</i>		100/01 0
15	NH ₂	NH2	6	I	100/81.3
	NO ₂				
16	NH_2	NH ₂	10	3	100/100
	NO2	NH ₂			
17	NH ₂	NH ₂	6	1	100/54.5
18	NO ₂ NH ₂	NH ₂ NH ₂	8	2	100/100
10	NO ₂	NH ₂	14	2	100/1000
19	NO ₂	NH ₂	14	3	100/100
	 NO ₂	 NH2			
20			6	1	100/100
	NO ₂	МН ₂			

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

^{*a*} Reaction condition :94mg catalyst, 1mmol substrate, the products were detected by GC-MS,NMR, ^{*b*} detected by GC-MS and NMR; ^{*c*} LC-MS was used.


```
Abundance
```


5000

ο

30

40 50

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

95 135 207 90 100 1012013014015016017018019@0@10

124.0981

119

118

116.9791

111.0487

107.070

106

0.1

129.0530

128 Counts vs

133

ΝH₂

154

139.0548

40.522

137 728

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

Fig. S8 Mass spectra of the various products.

aniline: δ6.702-7.201 (m, AR-H); δ6.805 (m, AR-H); δ3.652 (s, NH₂)

o-chloroaniline: δ6.742-7.251 (m, AR-H); δ4.034-4.036 (s, NH₂); δ1.226(m, solvent C₂H₅OH)

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

m-chloroaniline: δ7.262 (s, CHCl₃); δ6.533-7.060 (m, AR-H); δ3.709-3.727 (s, NH₂); δ1.240 (m, C₂H₅OH)

p-chloroaniline: δ7.262 (s, CHCl₃); δ6.599-7.110 (m, AR-H); δ3.656(S, NH₂); δ1.573 (m, C₂H₅OH)

o-aminophenol: δ8.959 (s, AR-OH); δ6.378-6.615 (m, AR-H); δ4.457 (s, NH₂); δ3.391 (m, DMSO); δ2.50 (m, C₂H₅OH)

p-aminophenol: δ8.364 (s, OH); δ6.454 (m, AR-H); δ4.395 (s, NH₂); δ3.389 (m, DMSO); δ2.503 (s, C₂H₅OH)

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

p-aminobenzoic acid: δ7.613 (m, AR-H); δ5.850 (s, NH₂); δ2.499 (m. C₂H₅OH)

p-methoxyaniline: δ6.491-6.646 (m, AR-H); δ4.608 (s, NH₂); δ3.608 (s, OCH₃); δ3.402 (m, DMSO); δ2.506 (m. C₂H₅OH)

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

o-phenylenediamine: δ7.251 (S, CHCl₃); δ6.687-6.711 (m, AR-H); δ3.337 (s, NH₂)

p-phenylenediamine: δ6.346 (m, AR-H); δ4.179 (s, NH₂); δ3.380 (DMSO);

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

1,2,4- triphenylamine: δ6.765 (m, AR-H); δ5.933 (s, NH₂); δ3.387 (m, DMSO); δ2.50 (m, C₂H₅OH)

2-chloride-1,4-phenylenediamine: δ6.346-6.550 (m, AR-H); δ4.406-4.493 (s, NH₂); δ3.389 (m, DMSO); δ2.502 (m,

C₂H₅OH)

ethyl 4-aminobenzoate: δ7.862 (d, 2H, Ar-H); δ6.620 (D, 2H, Ar-H); δ4.339 (Q, 2H, CH₃CH-H); δ4.094 (br, 2H, NH₂); δ1.356 (t, 3H, CH₂-H-CH₂)

o-toluidine: δ 7.049 (t, 2H, Ar-H)); δ 6.702 (t, 1H, Ar-H); δ 6.700 (d, 1H, Ar-H); δ 3.695 (s, 2H, NH₂); δ 2.163 (s, 3H, CH₃); δ 1.230 (m, C₂H₅OH)

p-toluidine: δ6.950 (d, 2H, Ar-H); δ6.641 (d, 2H, Ar-H); δ3.652 (s, 2H, NH₂); δ2.233 (s, 3H, CH₃); δ1.208 (m, C₂H₅OH)

Fig. S9 ¹HNMR of the various products.