Supporting Information

Sustainable and selective synthesis of 3,4-dihydroquinolizin-2-one and quinolizin-2-one derivatives *via* the reactions of penta-3,4-dien-2-ones

Xuesen Fan,^{*} Yan He, Xinying Zhang, and Jianji Wang

School of Environment, School of Chemistry and Chemical Engineering, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, Henan 453007, P. R. China.

Table of Contents

I. Experimental details and spectroscopic data	P2-18
II. Copies of ¹ H and ¹³ C NMR spectra of compounds 3a-3y	P19-43
III. Copies of ¹ H and ¹³ C NMR spectra of compounds 6a-6r	P44-61
IV. Copies of ¹ H and ¹³ C NMR spectra of compounds 4a-4n	P62-75
V. Copies of ¹ H and ¹³ C NMR spectra of compounds 7a-7f	P76-81
VI. E-factors of the overall process for the synthesis of 3a and 4a	P82-85
VII. References	P86

I. Experimental details and spectroscopic data

1. General experimental information

Thin-layer chromatography was visualized with UV light (254 and 365 nm). ¹H and ¹³C NMR spectra were determined on a Bruker AC 400 spectrometer as CDCl₃ solutions. Chemical shifts were expressed in parts per million (δ) downfield from the internal standard tetramethylsilane and were reported as s (singlet), d (doublet), t (triplet), m (multiplet) and coupling constants *J* were given in Hz. High resolution mass spectra (HRMS) were performed on a time-of-flight (microTOF) mass spectrometer.

Penta-3,4-dien-2-ones (1), except for 5-phenylpenta-3,4-dien-2-one, were prepared through oxidation of homo- propargyl alcohols,¹ which were prepared through zinc promoted propargylation of aldehydes.² 5-Phenylpenta-3,4-dien-2-one was synthesized *via* reaction of 1-(triphenylphosphoranylidene)-2-propanone with phenylacetyl chloride.³ Pyridines, quinoline, isoquinoline, and phenanthridine are commercial reagents.

2. Typical procedure for the preparation of 4-methyl-1-phenyl-1*H*-quinolizin-2(9*aH*)-one (3a)

To a flask containing pyridine (**2a**, 1 mmol), AcOH (0.2 mmol), EtOH (95%, 2 mL) was added 1-phenylpenta-3,4-dien-2-one (**1a**, 1 mmol). The mixture was stirred at rt for 2 h. Upon completion, the resulting mixture was treated with water (3 mL), and the mixture was let to stand at 0 °C overnight. The solids thus precipitated were collected by filtration to give **3a**. **3b-3y** and **6a-6r** were obtained in a similar manner.

4-Methyl-1-phenyl-1*H*-quinolizin-2(9*aH*)-one (3a)

¹H NMR (400 MHz, CDCl₃) δ : 2.14 (s, 3H), 3.77 (d, J = 15.2 Hz, 1H), 4.86 (d, J = 16.0 Hz, 1H), 5.03 (d, J = 9.6 Hz, 1H), 5.18 (t, J = 6.4 Hz, 1H), 5.45 (s, 1H), 5.85-5.88 (m, 1H), 6.54 (d, J = 8.0 Hz, 1H), 7.13 (d, J = 7.6 Hz, 2H), 7.27-7.38 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 20.5, 57.5, 60.6, 103.4, 106.1, 120.0, 122.2, 125.9, 127.5, 128.9, 129.9, 136.3, 155.7, 190.8. MS: m/z 238 [MH]⁺. HRMS calcd for C₁₆H₁₆NO: 238.1232 [M+H], found: 238.1236.

1-(2-Fluorophenyl)-4-methyl-1*H*-quinolizin-2(9*aH*)-one (3b)

¹H NMR (400 MHz, CDCl₃) δ : 2.16 (s, 3H), 4.09-4.12 (m, 1H), 4.95-5.04 (m, 2H), 5.18 (t, J = 6.8 Hz, 1H), 5.44 (s, 1H), 5.87-5.92 (m, 1H), 6.54 (d, J = 7.6 Hz, 1H), 7.05-7.17 (m, 3H), 7.27-7.32 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ : 20.4, 59.3, 60.6, 103.4, 105.4, 115.6, 115.8, 119.7, 122.4, 123.2, 123.3, 124.5, 124.6, 125.9, 129.3, 129.4, 156.0, 171.1, 189.7. MS: m/z 256 [MH]⁺. HRMS calcd for C₁₆H₁₅FNO: 256.1137 [M+H], found: 256.1139.

1-(4-Fluorophenyl)-4-methyl-1*H*-quinolizin-2(9*aH*)-one (3c)

¹H NMR (400 MHz, CDCl₃) δ : 2.16 (s, 3H), 3.77 (d, J = 15.6 Hz, 1H), 4.82 (d, J = 16.0 Hz, 1H), 5.01-5.03 (m, 1H), 5.21 (t, J = 6.4 Hz, 1H), 5.45 (s, 1H), 5.89-5.91 (m 1H), 6.54 (d, J = 7.6 Hz, 1H), 7.06-7.10 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ : 20.5, 56.8, 60.6, 103.4, 106.1, 115.7, 115.9, 119.7, 122.4, 125.8, 131.3, 131.4, 131.5, 131.91, 131.94, 155.6, 163.4, 190.5. MS: m/z 256 [MH]⁺. HRMS calcd for C₁₆H₁₅FNO: 256.1137 [M+H], found: 256.1131.

4-Methyl-1-p-tolyl-1H-quinolizin-2(9aH)-one (3d)

¹H NMR (400 MHz, CDCl₃) δ : 2.16 (s, 3H), 2.33 (s, 3H), 3.73 (d, J = 15.6 Hz, 1H), 4.83 (d, J = 16.4 Hz, 1H), 5.08 (d, J = 6.4 Hz, 1H), 5.17-5.21 (m, 1H), 5.46 (s, 1H), 5.85-5.89 (m, 1H), 6.54 (d, J = 7.6 Hz, 1H), 7.02 (d, J = 8.0 Hz, 2H), 7.17 (d, J = 7.2 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ : 20.5, 21.2, 57.1, 60.6, 103.4, 106.1, 120.2, 122.1, 125.8, 129.6, 129.7, 133.1, 137.1, 155.5, 191.1. MS: m/z 252 [MH]⁺. HRMS calcd for C₁₇H₁₈NO: 252.1388 [M+H], found: 252.1390.

1-(4-Methoxyphenyl)-4-methyl-1*H*-quinolizin-2(9*aH*)-one (3e)

¹H NMR (400 MHz, CDCl₃) δ : 2.13 (s, 3H), 3.70 (d, J = 16.4 Hz, 1H), 3.77 (s, 3H), 4.78 (d, J = 16.0 Hz, 1H), 5.06 (d, J = 10.0 Hz, 1H), 5.16-5.19 (m, 1H), 5.43 (s, 1H), 5.85-5.88 (m, 1H), 6.52 (d, J = 7.6 Hz, 1H), 6.89 (d, J = 8.4 Hz, 2H), 7.03 (d, J = 8.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ : 20.4, 55.3, 56.7, 60.7, 103.4, 106.1, 114.4, 120.2, 122.1, 125.9, 128.2, 130.9, 155.5, 158.9, 191.2. MS: m/z 268 [MH]⁺. HRMS calcd for C₁₇H₁₈NO₂: 268.1337 [M+H], found: 268.1340.

1-(3,4-Dimethoxyphenyl)-4-methyl-1*H*-quinolizin-2(9*aH*)-one (3f)

¹H NMR (400 MHz, CDCl₃) δ : 2.16 (s, 3H), 3.70 (d, J = 15.2 Hz, 1H), 3.85 (s, 3H), 3.86 (s, 3H), 4.82 (d, J = 16.0 Hz, 1H), 5.06-5.09 (m, 1H), 5.20 (t, J = 6.8 Hz, 1H), 5.46 (s, 1H), 5.87-5.90 (m, 1H), 6.54 (d, J = 7.6 Hz, 1H), 6.61 (d, J = 1.6 Hz, 1H), 6.69-6.72 (m, 1H), 6.86 (d, J = 8.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ : 20.4, 55.9, 57.2, 60.7, 103.4, 106.1, 111.5, 112.5, 120.2, 122.1, 122.3, 125.8, 128.6, 148.4, 149.3, 155.5, 191.0. MS: m/z 298 [MH]⁺. HRMS calcd for C₁₈H₂₀NO₃: 298.1443 [M+H], found: 298.1444.

4-Methyl-1-(thiophen-2-yl)-1*H*-quinolizin-2(9*aH*)-one (3g)

¹H NMR (400 MHz, CDCl₃) δ : 2.08 (s, 3H), 3.58 (d, J = 4.0 Hz, 1H), 5.04 (t, J = 7.2 Hz, 1H), 5.14-5.37 (m, 3H), 5.82-5.85 (m, 1H), 6.44 (d, J = 8.0 Hz, 1H), 6.89 (t, J = 4.0 Hz, 1H), 6.95 (d, J = 2.4 Hz, 1H), 7.15 (d, J = 4.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ : 20.2, 51.4, 60.7, 102.8, 103.3, 120.5, 122.7, 125.1, 125.2, 126.5, 126.6, 135.6, 156.1, 189.1. MS: m/z 244 [MH]⁺. HRMS calcd for C₁₄H₁₄NOS: 244.0796 [M+H], found: 244.0799.

1-Benzyl-4-methyl-1*H*-quinolizin-2(9*aH*)-one (3h)

¹H NMR (400 MHz, CDCl₃) δ : 2.03 (s, 3H), 2.82-2.88 (m, 1H), 3.06 (dd, $J_1 = 14.8$ Hz, $J_2 = 4.4$ Hz, 1H), 3.46 (dd, $J_1 = 14.8$ Hz, $J_2 = 3.6$ Hz, 1H), 4.24 (d, J = 15.2 Hz, 1H), 5.18 (t, J = 6.4 Hz, 1H), 5.33 (s, 1H), 5.64-5.67 (m, 1H), 5.96-5.99 (m, 1H), 6.46 (d, J = 8.0 Hz, 1H), 7.19-7.22 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) δ : 20.5, 30.7, 50.0, 57.6, 103.8, 105.6, 119.5, 122.7, 126.5, 128.35, 128.44, 129.6, 138.5, 155.5, 190.5. MS: m/z 252 [MH]⁺. HRMS calcd for C₁₇H₁₈NO: 252.1388 [M+H], found: 252.1397.

4-Benzyl-1*H*-quinolizin-2(9a*H*)-one (3i)

¹H NMR (400 MHz, CDCl₃) δ: 3.72 (s, 2H), 4.27 (s, 1H), 4.74-4.78 (m, 1H), 5.04 (t, *J* = 6.4 Hz, 1H), 5.28 (s, 1H), 5.31-5.34 (m, 1H), 5.90-5.95 (m, 1H), 6.46 (d, *J* = 8.0 Hz, 1H), 7.17 (d, *J* = 8.0 Hz, 2H), 7.24-7.36 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ: 39.3, 42.7, 56.2, 103.3, 106.7, 121.5, 122.0, 126.0, 127.3, 128.3, 129.1,

135.0, 157.4, 190.7. MS: m/z 238 $[MH]^+$. HRMS calcd for $C_{16}H_{16}NO$: 238.1232 [M+H], found: 238.1234.

3,4-Dimethyl-1-phenyl-1*H*-quinolizin-2(9*aH*)-one (3j)

¹H NMR (400 MHz, CDCl₃) δ : 1.94 (s, 3H), 2.18 (s, 3H), 3.79 (d, J = 16.8 Hz, 1H), 4.81 (d, J = 16.8 Hz, 1H), 4.94-4.97 (m, 1H), 5.11 (t, J = 6.4 Hz, 1H), 5.83-5.88 (m, 1H), 6.59 (d, J = 7.6 Hz, 1H), 7.11-7.13 (m, 2H), 7.26-7.37 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 11.6, 16.7, 57.7, 60.0, 102.1, 111.3, 119.4, 122.2, 126.6, 127.3, 128.7, 129.9, 136.8, 152.3, 190.1. MS: m/z 252 [MH]⁺. HRMS calcd for C₁₇H₁₈NO: 252.1388 [M+H], found: 252.1385.

3-Ethyl-1-(4-methoxyphenyl)-4-methyl-1*H*-quinolizin-2(9*aH*)-one (3k)

¹H NMR (400 MHz, CDCl₃) δ : 0.98 (t, J = 7.6 Hz, 3H), 2.18 (s, 3H), 2.31-2.37 (m, 1H), 2.50-2.55 (m, 1H), 3.72 (d, J = 16.0 Hz, 1H), 3.78 (s, 3H), 4.74 (dd, $J_I = 16.0$ Hz, $J_2 = 2.0$ Hz, 1H), 4.96-4.99 (m, 1H), 5.08-5.12 (m, 1H), 5.82-5.87 (m, 1H), 6.57 (d, J = 7.6 Hz, 1H), 6.87-6.90 (m, 2H), 7.00-7.03 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ : 14.4, 16.2, 19.3, 55.3, 56.9, 60.1, 102.0, 114.2, 117.9, 119.5, 122.1, 126.6, 128.7, 130.8, 151.9, 158.7, 190.1. MS: m/z 296 [MH]⁺. HRMS calcd for C₁₉H₂₂NO₂: 296.1651 [M+H], found: 296.1638.

1-Phenyl-4-propyl-1*H*-quinolizin-2(9*aH*)-one (3l)

¹H NMR (400 MHz, CDCl₃) δ : 1.02 (t, *J* = 7.4 Hz, 3H), 1.62-1.68 (m, 2H), 2.39-2.43 (m, 2H), 3.78 (d, *J* = 15.6 Hz, 1H), 4.86 (d, *J* = 16.0 Hz, 1H), 5.00-5.03 (m, 1H), 5.17 (t, *J* = 6.6 Hz, 1H), 5.48 (s, 1H), 5.84-5.88 (m, 1H), 6.55 (d, *J* = 8.0 Hz, 1H), 7.14 (d, *J* = 7.6 Hz, 2H), 7.26-7.38 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 13.9, 20.4, 35.1, 57.6, 60.9, 103.1, 105.4, 120.2, 122.1, 125.6, 127.5, 128.9, 129.9, 136.3, 159.2, 191.2. MS: m/z 266 [MH]⁺. HRMS calcd for C₁₈H₂₀NO: 266.1545 [M+H], found: 266.1547.

4-Benzyl-1-phenyl-1*H*-quinolizin-2(9*aH*)-one (3m)

¹H NMR (400 MHz, CDCl₃) δ: 3.80 (s, 2H), 3.84 (d, *J* = 15.2 Hz, 1H), 4.92-5.08 (m, 3H), 5.50 (s, 1H), 5.81-5.85 (m, 1H), 6.52 (d, *J* = 8.0 Hz, 1H), 7.15-7.39 (m, 10H). ¹³C NMR (100 MHz, CDCl₃) δ: 39.5, 57.7, 61.1, 103.1, 107.5, 120.0, 122.1, 125.9, 127.3, 127.5, 128.4, 128.9, 129.1, 129.9, 135.2, 136.2, 156.8, 191.1.

MS: m/z 314 [MH]⁺. HRMS calcd for C₂₂H₂₀NO: 314.1545 [M+H], found: 314.1548.

4,6-Dimethyl-1-phenyl-1*H*-quinolizin-2(9*aH*)-one (3n)

¹H NMR (400 MHz, CDCl₃) δ : 1.27 (s, 3H), 2.13 (s, 3H), 4.29 (s, 1H), 5.19-5.31 (m, 3H), 5.81-5.84 (m, 1H), 6.47 (d, *J* = 7.6 Hz, 1H), 7.21 (d, *J* = 6.8 Hz, 2H), 7.30-7.37 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 15.1, 21.0, 61.4, 62.7, 104.2, 104.5, 120.0, 124.8, 125.3, 127.4, 127.9, 133.9, 154.4, 190.3. MS: m/z 252 [MH]⁺. HRMS calcd for C₁₇H₁₈NO: 252.1388 [M+H], found: 252.1390.

6-Methyl-1-phenyl-4-propyl-1*H*-quinolizin-2(9*aH*)-one (30)

¹H NMR (400 MHz, CDCl₃) δ: 1.02 (t, *J* = 7.4 Hz, 3H), 1.26 (s, 3H), 1.61-1.66 (m, 2H), 2.35-2.40 (m, 2H), 4.29 (s, 1H), 5.18-5.27 (m, 2H), 5.32 (s, 1H), 5.80-5.84 (m, 1H), 6.48 (d, *J* = 8.0 Hz, 1H), 7.20-7.37 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) δ: 13.9, 15.1, 20.4, 35.3, 61.4, 62.8, 103.5, 104.2, 119.9, 125.05, 125.08, 127.4, 127.9, 134.0, 158.0, 190.6. MS: m/z 280 [MH]⁺. HRMS calcd for C₁₉H₂₂NO: 280.1701 [M+H], found: 280.1712.

1-(4-Methoxyphenyl)-4,6-dimethyl-1*H*-quinolizin-2(9*aH*)-one (3p)

¹H NMR (400 MHz, CDCl₃) δ : 1.23 (s, 3H), 2.11 (s, 3H), 3.78 (s, 3H), 4.23 (s, 1H), 5.20-5.28 (m, 3H), 5.79-5.83 (m, 1H), 6.45 (d, *J* = 7.6 Hz, 1H), 6.88 (d, *J* = 9.2 Hz, 2H), 7.11 (d, *J* = 8.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ : 15.0, 20.9, 55.2, 60.5, 62.7, 104.1, 104.5, 113.5, 119.9, 124.9, 125.3, 125.8, 154.4, 158.9, 190.6. MS: m/z 282 [MH]⁺. HRMS calcd for C₁₈H₂₀NO₂: 282.1494 [M+H], found: 282.1495.

4,6-Dimethyl-1-*p*-tolyl-1*H*-quinolizin-2(9*aH*)-one (3q)

¹H NMR (400 MHz, CDCl₃) δ : 1.26 (s, 3H), 2.11 (s, 3H), 2.34 (s, 3H), 4.25 (s, 1H), 5.21-5.30 (m, 3H), 5.79-5.83 (m, 1H), 6.47 (d, J = 7.6 Hz, 1H), 7.10 (d, J = 7.6 Hz, 2H), 7.16 (d, J = 8.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ : 15.0, 21.0, 21.2, 61.0, 62.7, 104.2, 104.5, 119.9, 124.9, 125.3, 128.7, 130.8, 137.0, 154.3, 190.5. MS: m/z 266 [MH]⁺. HRMS calcd for C₁₈H₂₀NO: 266.1545 [M+H], found: 266.1533.

4,8-Dimethyl-1-phenyl-1*H*-quinolizin-2(9*aH*)-one (3r)

¹H NMR (400 MHz, CDCl₃) δ : 1.66 (s, 3H), 2.15 (s, 3H), 2.59 (d, J = 4.8 Hz, 1H), 3.70 (d, J = 15.6 Hz, 1H), 4.76 (s, 1H), 5.09 (d, J = 8.0 Hz, 1H), 5.43 (s, 1H), 6.53 (d, J = 8.0 Hz, 1H), 7.13 (d, J = 8.4 Hz, 2H), 7.27-7.38 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 20.6, 21.3, 57.6, 60.5, 105.9, 107.2, 115.1, 125.4, 127.4, 128.8, 130.0, 130.6, 131.1, 136.6, 155.5, 191.3. MS: m/z 252 [MH]⁺. HRMS calcd for C₁₇H₁₈NO: 252.1388 [M+H], found: 252.1387.

1-(4-Methoxyphenyl)-4,8-dimethyl-1*H*-quinolizin-2(9*aH*)-one (3s)

¹H NMR (400 MHz, CDCl₃) δ : 1.65 (s, 3H), 2.12 (s, 3H), 3.63 (d, J = 16.0 Hz, 1H), 3.78 (s, 3H), 4.70 (d, J = 15.6 Hz, 1H), 4.79 (s, 1H), 5.07 (d, J = 7.2 Hz, 1H), 5.40 (s, 1H), 6.51 (d, J = 7.6 Hz, 1H), 6.89 (d, J = 8.4 Hz, 2H), 7.03 (d, J = 8.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ : 20.5, 20.6, 55.2, 56.7, 60.6, 105.8, 107.2, 114.3, 115.2, 125.4, 128.4, 130.5, 130.9, 155.4, 158.8, 191.6. MS: m/z 282 [MH]⁺. HRMS calcd for C₁₈H₂₀NO₂: 282.1494 [M+H], found: 282.1499.

4,8-Dimethyl-1-*p*-tolyl-1*H*-quinolizin-2(9*aH*)-one (3t)

¹H NMR (400 MHz, CDCl₃) δ: 1.66 (s, 3H), 2.15 (s, 3H), 2.34 (s, 3H), 3.66 (d, *J* = 16.0 Hz, 1H), 4.75 (d, *J* = 16.4 Hz, 1H), 4.80 (s, 1H), 5.08-5.10 (m, 1H), 5.44 (s, 1H), 6.53 (d, *J* = 8.0 Hz, 1H), 7.02 (d, *J* = 8.0 Hz, 2H), 7.18 (d, *J* = 8.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ: 20.45, 20.54, 21.2, 57.2, 60.4, 105.9, 107.2, 115.2, 125.4, 129.6, 130.5, 130.9, 133.4, 137.0, 155.3, 191.5. MS: m/z 266 [MH]⁺. HRMS calcd for C₁₈H₂₀NO: 266.1545 [M+H], found: 266.1541

1-(4-Fluorophenyl)-4,8-dimethyl-1*H*-quinolizin-2(9*aH*)-one (3u)

¹H NMR (400 MHz, CDCl₃) δ : 1.67 (s, 3H), 2.15 (s, 3H), 3.70 (d, J = 16.0 Hz, 1H), 4.72 (d, J = 6.8 Hz, 2H), 5.08-5.11 (m, 1H), 5.42 (s, 1H), 6.53 (d, J = 7.6 Hz, 1H), 7.03-7.10 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ : 20.4, 20.5, 56.7, 60.5, 105.7, 107.2, 114.7, 115.6, 115.8, 125.3, 130.8, 131.3, 131.4, 132.17, 132.21, 155.5, 160.9, 163.3, 190.9. MS: m/z 270 [MH]⁺. HRMS calcd for C₁₇H₁₇FNO: 270.1294 [M+H], found: 270.1282.

1-(3,4-Dimethoxyphenyl)-4,8-dimethyl-1*H*-quinolizin-2(9*aH*)-one (3v)

¹H NMR (400 MHz, CDCl₃) δ : 1.61 (s, 3H), 2.08 (s, 3H), 3.55-3.59 (m, 1H), 3.79 (s, 3H), 3.80 (s, 3H), 4.68 (d, J = 15.6 Hz, 1H), 4.73 (s, 1H), 5.03 (d, J = 8.0 Hz, 1H), 5.35 (s, 1H), 6.47 (d, J = 8.0 Hz, 1H), 6.56 (s, 1H), 6.64 (d, J = 8.0 Hz, 1H), 6.80-6.82 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ : 20.4, 20.6, 55.8, 57.1, 60.5, 105.7, 107.1, 111.4, 112.4, 115.1, 122.2, 125.4, 128.9, 130.5, 148.2, 149.1, 155.4, 191.3. MS: m/z 312 [MH]⁺. HRMS calcd for C₁₉H₂₂NO₃: 312.1599 [M+H], found: 312.1608.

1-Benzyl-4,8-dimethyl-1*H*-quinolizin-2(9*aH*)-one (3w)

¹H NMR (400 MHz, CDCl₃) δ : 1.78 (s, 3H), 2.05 (s, 3H), 2.77-2.83 (m, 1H), 3.05 (dd, $J_1 = 15.2$ Hz, $J_2 = 4.8$ Hz, 1H), 3.51 (dd, $J_1 = 14.8$ Hz, $J_2 = 4.0$ Hz, 1H), 4.18 (d, J = 16.0 Hz, 1H), 5.09 (dd, $J_1 = 7.6$ Hz, $J_2 = 1.6$ Hz, 1H), 5.31 (s, 1H), 5.40 (s, 1H), 6.46 (d, J = 7.2 Hz, 1H), 7.14-7.26 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) δ : 20.5, 20.7, 30.7, 50.1, 57.5, 105.5, 107.4, 114.7, 126.0, 126.2, 128.3, 129.7, 131.0, 138.5, 155.1, 190.9. MS: m/z 266 [MH]⁺. HRMS calcd for C₁₈H₂₀NO: 266.1545 [M+H], found: 266.1547.

4,8-Dimethyl-1-(thiophen-2-yl)-1*H*-quinolizin-2(9*aH*)-one (3x)

¹H NMR (400 MHz, CDCl₃) δ : 1.65 (s, 3H), 2.07 (s, 3H), 3.54 (d, J = 3.6 Hz, 1H), 4.86-5.23 (m, 4H), 6.41 (d, J = 7.6 Hz, 1H), 6.86-6.90 (m, 1H), 6.99-7.00 (m, 1H), 7.12-7.13 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ : 20.1, 20.7, 51.4, 60.7, 103.1, 106.6, 115.4, 124.6, 125.1, 126.38, 126.44, 127.9, 130.9, 155.9, 189.7. MS: m/z 258 [MH]⁺. HRMS calcd for C₁₅H₁₆NOS: 258.0953 [M+H], found: 258.0955.

3,4,6-Trimethyl-1-phenyl-1*H*-quinolizin-2(9*aH*)-one (3y)

¹H NMR (400 MHz, CDCl₃) δ: 1.49 (s, 3H), 1.82 (s, 3H), 2.18 (s, 3H), 3.36 (s, 1H), 4.90-4.93 (m, 1H), 5.06-5.10 (m, 1H), 5.62-5.66 (m, 1H), 6.46 (d, *J* = 7.6 Hz, 1H), 7.21-7.34 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) δ: 11.2, 16.9, 22.9, 61.0, 61.5, 103.3, 119.9, 125.1, 126.1, 127.3, 128.5, 128.9, 136.7, 189.9. MS: m/z 266 [MH]⁺. HRMS calcd for C₁₈H₂₀NO: 266.1545 [M+H], found: 266.1533.

1-Methyl-4-phenyl-4,4*a*-dihydro-3*H*-pyrido[1, 2-*a*]quinolin-3-one (6a)

¹H NMR (400 MHz, CDCl₃) δ: 1.94 (s, 3H), 3.80 (d, *J* = 4.8 Hz, 1H), 4.75-4.77 (m, 1H), 5.39 (s, 1H), 5. 90 (dd,

 $J_1 = 9.2 \text{ Hz}, J_2 = 2.8 \text{ Hz}, 1\text{H}$, 6.53 (dd, $J_1 = 9.2 \text{ Hz}, J_2 = 2.8 \text{ Hz}, 1\text{H}$), 7.08-7.40 (m, 9H). ¹³C NMR (100 MHz, CDCl₃) δ : 22.0, 55.7, 62.1, 106.6, 123.4, 125.7, 127.2, 127.3, 127.5, 127.9, 128.0, 128.8, 128.9, 131.7, 138.2, 138.7, 159.2, 191.2. MS: m/z 288 [MH]⁺. HRMS calcd for C₂₀H₁₈NO: 288.1388 [M+H], found: 288.1396.

4-(4-Methoxyphenyl)-1-methyl-4,4a-dihydro-3H-pyrido[1,2-a]quinolin-3-one (6b)

¹H NMR (400 MHz, CDCl₃) δ : 1.92 (s, 3H), 3.63 (s, 1H), 3.72 (s, 3H), 4.69-4.71 (m, 1H), 5.35 (s, 1H), 5.86 (dd, $J_I = 9.6$ Hz, $J_2 = 2.8$ Hz, 1H), 6.50 (dd, $J_I = 10.0$ Hz, $J_2 = 2.4$ Hz, 1H), 6.83 (dd, $J_I = 6.8$ Hz, $J_2 = 2.4$ Hz, 2H), 7.05-7.11 (m, 3H), 7.17-7.19 (m, 1H), 7.27-7.29 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ : 21.9, 54.9, 55.2, 62.2, 106.6, 114.2, 123.3, 125.6, 127.16, 127.19, 127.9, 128.9, 129.0, 130.2, 131.6, 138.7, 158.9, 159.0, 191.6. MS: m/z 318 [MH]⁺. HRMS calcd for C₂₁H₂₀NO₂: 318.1494 [M+H], found: 318.1499.

4-Benzyl-1-methyl-4,4*a*-dihydro-3*H*-pyrido[1,2-*a*]quinolin-3-one (6c)

¹H NMR (400 MHz, CDCl₃) δ : 1.75 (s, 3H), 2.69-2.73 (m, 1H), 2.93-3.00 (m, 1H), 3.08-3.13 (m, 1H), 4.23 (d, J = 2.0 Hz, 1H), 5.24 (s, 1H), 5.92 (dd, $J_I = 9.2$ Hz, $J_2 = 2.4$ Hz, 1H), 6.48 (dd, $J_I = 9.2$ Hz, $J_2 = 2.8$ Hz, 1H), 7.10 (d, J = 7.6 Hz, 1H), 7.18-7.28 (m, 8H). ¹³C NMR (100 MHz, CDCl₃) δ : 22.1, 37.4, 51.6, 58.2, 104.2, 125.3, 126.6, 126.9, 127.0, 127.6, 127.7, 128.6, 129.4, 130.7, 134.0, 138.3, 140.0, 159.1, 193.5. MS: m/z 302 [MH]⁺. HRMS calcd for C₂₁H₂₀NO: 302.1545 [M+H], found: 302.1548.

1-(4-Methoxyphenyl)-4-methyl-1*H*-pyrido[2,1-*a*]isoquinolin-2(11*bH*)-one (6d)

¹H NMR (400 MHz, CDCl₃) δ : 2.17 (s, 3H), 3.79 (s, 3H), 4.14 (d, J = 12.4 Hz, 1H), 5.37 (d, J = 12.8 Hz, 1H), 5.50 (s, 1H), 5.79 (d, J = 7.6 Hz, 1H), 6.22 (d, J = 8.0 Hz, 1H), 6.56 (d, J = 8.0 Hz, 1H), 6.76 (t, J = 7.6 Hz, 1H), 6.85 (d, J = 8.8 Hz, 2H), 6.95 (d, J = 8.0 Hz, 1H), 7.01 (d, J = 8.8 Hz, 2H), 7.08 (t, J = 7.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ : 20.4, 55.3, 55.9, 63.1, 107.1, 114.1, 124.2, 125.7, 126.0, 127.0, 127.8, 127.9, 129.3, 130.6, 131.2, 156.3, 158.9, 191.8. MS: m/z 318 [MH]⁺. HRMS calcd for C₂₁H₂₀NO₂: 318.1494 [M+H], found: 318.1488.

4-Methyl-1-*p*-tolyl-1*H*-pyrido[2,1-*a*]isoquinolin-2(11*bH*)-one (6e)

¹H NMR (400 MHz, CDCl₃) δ : 2.15 (s, 3H), 2.35 (s, 3H), 4.18 (d, J = 12.0 Hz, 1H), 5.40 (d, J = 12.4 Hz, 1H), 5.50 (s, 1H), 5.82 (d, J = 7.6 Hz, 1H), 6.32 (d, J = 7.6 Hz, 1H), 6.57-6.59 (m, 1H), 6.78 (t, J = 7.6 Hz, 1H), 6.96 (d, J = 7.6 Hz, 1H), 7.04 (d, J = 7.6 Hz, 2H), 7.08 (t, J = 7.6 Hz, 1H), 7.13 (d, J = 7.6 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ : 20.4, 21.3, 56.1, 62.8, 106.8, 107.4, 124.2, 126.0, 126.1, 126.9, 127.9, 128.1, 129.4, 130.0, 130.8, 134.4, 137.0, 156.3, 191.5. MS: m/z 302 [MH]⁺. HRMS calcd for C₂₁H₂₀NO: 302.1545 [M+H], found: 302.1547.

1-Benzyl-4-methyl-1*H*-pyrido[2,1-*a*]isoquinolin-2(11*bH*)-one (6f)

¹H NMR (400 MHz, CDCl₃) δ : 1.98 (s, 3H), 3.16-3.19 (m, 2H), 3.39-3.41 (m, 1H), 4.66 (d, J = 5.2 Hz, 1H), 5.13 (s, 1H), 6.16 (d, J = 6.8 Hz, 1H), 6.70 (d, J = 7.6 Hz, 1H), 7.06-7.08 (m, 1H), 7.18-7.28 (m, 8H). ¹³C NMR (100 MHz, CDCl₃) δ : 20.1, 37.2, 47.1, 59.3, 102.5, 114.5, 123.6, 124.6, 126.6, 127.5, 127.9, 128.5, 129.2, 129.6, 131.0, 132.1, 138.3, 156.3, 193.1. MS: m/z 302 [MH]⁺. HRMS calcd for C₂₁H₂₀NO: 302.1545 [M+H], found: 302.1548.

4-Benzyl-1*H*-pyrido[2,1-*a*]isoquinolin-2(11b*H*)-one (6g)

¹H NMR (400 MHz, CDCl₃) δ : 3.80 (s, 2H), 5.25-5.31 (m, 1H), 5.36 (s, 1H), 5.57 (d, J = 7.6 Hz, 1H), 6.58 (d, J = 8.4 Hz, 1H), 6.93-6.95 (m, 1H), 7.11 (d, J = 6.0 Hz, 1H), 7.15-7.21 (m, 4H), 7.24-7.35 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ : 39.8, 41.9, 57.2, 106.1, 106.8, 124.4, 124.9, 125.2, 127.2, 128.2, 128.3, 129.1, 129.8, 130.1, 135.1, 157.9, 190.9. MS: m/z 288 [MH]⁺. HRMS calcd for C₂₀H₁₈NO: 288.1388 [M+H], found: 288.1390.

3,4-Dimethyl-1-phenyl-1*H*-pyrido[2,1-*a*]isoquinolin-2(11*bH*)-one (6h)

¹H NMR (400 MHz, CDCl₃) δ : 1.93 (s, 3H), 2.19 (s, 3H), 4.25 (d, J = 13.2 Hz, 1H), 5.35 (d, J = 12.4 Hz, 1H), 5.67 (d, J = 8.0 Hz, 1H), 5.87 (d, J = 7.6 Hz, 1H), 6.47 (d, J = 8.0 Hz, 1H), 6.61 (t, J = 7.6 Hz, 1H), 6.90 (d, J = 7.6 Hz, 1H), 6.93-6.96 (m, 2H), 7.01 (t, J = 7.9 Hz, 1H), 7.22-7.27 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 11.1, 17.4, 57.3, 63.7, 104.6, 115.4, 123.6, 125.3, 126.4, 127.1, 127.4, 127.8, 128.3, 130.5, 130.6, 131.0, 137.1,

153.0, 192.1. MS: m/z 302 $[MH]^+$. HRMS calcd for $C_{21}H_{20}NO$: 302.1545 [M+H], found: 302.1548.

1-(4-Fluorophenyl)-3,4-dimethyl-1*H*-pyrido[2,1-*a*]isoquinolin-2(11*bH*)-one (6i)

¹H NMR (400 MHz, CDCl₃) δ :1.94 (s, 3H), 2.16 (s, 3H), 4.24 (d, J = 13.2 Hz, 1H), 5.30 (d, J = 13.2 Hz, 1H), 5.66 (d, J = 7.6 Hz, 1H), 5.85 (d, J = 8.0 Hz, 1H), 6.45 (d, J = 7.6 Hz, 1H), 6.65 (t, J = 7.6 Hz, 1H), 6.87-6.97 (m, 5H), 7.03 (t, J = 7.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ : 11.1, 17.4, 56.5, 63.8, 104.5, 115.1, 115.2, 115.3, 123.8, 125.4, 126.3, 127.5, 127.9, 130.5, 132.1, 132.2, 132.79, 132.83, 153.3, 160.8, 163.3, 191.7. MS: m/z 320 [MH]⁺. HRMS calcd for C₂₁H₁₉FNO: 320.1451 [M+H], found: 320.1462.

3,4-Dimethyl-1-*p*-tolyl-1*H*-pyrido[2,1-*a*]isoquinolin-2(11*bH*)-one (6j)

¹H NMR (400 MHz, CDCl₃) δ : 1.94 (s, 3H), 2.16 (s, 3H), 2.33 (s, 3H), 4.22 (d, *J* = 13.2 Hz, 1H), 5.34 (d, *J* = 13.2 Hz, 1H), 5.68 (d, *J* = 7.6 Hz, 1H), 5.98 (d, *J* = 8.0 Hz, 1H), 6.47 (d, *J* = 8.0 Hz, 1H), 6.65 (t, *J* = 7.6 Hz, 1H), 6.86 (d, *J* = 8.4 Hz, 2H), 6.91 (d, *J* = 7.6 Hz, 1H), 7.01-7.08 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 11.1, 17.4, 21.2, 57.0, 63.6, 104.6, 115.1, 123.6, 125.4, 126.6, 126.9, 127.5, 127.7, 129.1, 130.3, 130.6, 134.1, 136.7, 153.0, 192.2. MS: m/z 316 [MH]⁺. HRMS calcd for C₂₂H₂₂NO: 316.1701 [M+H], found: 316.1716.

1-(4-Methoxyphenyl)-3,4-dimethyl-1*H*-pyrido[2,1-*a*]isoquinolin-2(11*bH*)-one (6k)

¹H NMR (400 MHz, CDCl₃) δ : 1.97 (s, 3H), 2.22 (s, 3H), 3.65 (s, 3H), 3.76 (d, J = 4.4 Hz, 1H), 5.32 (d, J = 7.6 Hz, 1H), 5.75 (d, J = 4.0 Hz, 1H), 6.48 (d, J = 7.6 Hz, 1H), 6.62 (d, J = 8.8 Hz, 2H), 6.78-6.80 (m, 1H), 6.89 (d, J = 8.8 Hz, 2H), 7.07-7.10 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 11.3, 16.8, 55.0, 55.4, 61.8, 103.6, 111.6, 113.6, 124.7, 125.0, 125.6, 126.68, 126.74, 127.8, 127.9, 129.8, 130.3, 152.9, 158.6, 190.9. MS: m/z 332 [MH]⁺. HRMS calcd for C₂₂H₂₂NO₂: 332.1650 [M+H], found: 332.1656.

1-(3,4-Dimethoxyphenyl)-3,4-dimethyl-1*H*-pyrido[2,1-*a*]isoquinolin-2(11*bH*)-one (6l)

¹H NMR (400 MHz, CDCl₃) δ : 1.88 (s, 3H), 2.12 (s, 3H), 3.66 (s, 3H), 3.78 (s, 3H), 4.12 (d, J = 13.2 Hz, 1H), 5.25 (d, J = 12.4 Hz, 1H), 5.61 (d, J = 8.0 Hz, 1H), 5.87 (d, J = 8.0 Hz, 1H), 6.35 (d, J = 2.0 Hz, 1H), 6.41 (d, J = 7.6 Hz, 1H), 6.46-6.48 (m, 1H), 6.57-6.60 (m, 1H), 6.71 (d, J = 8.4 Hz, 1H), 6.85 (d, J = 6.8 Hz, 1H), 6.96 (d, *J* = 6.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ: 11.1, 17.4, 55.8, 56.9, 63.7, 104.4, 111.1, 114.0, 115.2, 122.7, 123.6, 125.3, 126.4, 126.6, 127.5, 127.7, 129.4, 130.4, 148.1, 148.6, 153.0, 192.0. MS: m/z 362 [MH]⁺. HRMS calcd for C₂₃H₂₄NO₃: 362.1756 [M+H], found: 362.1755.

3-Ethyl-4-methyl-1-phenyl-1*H*-pyrido[2,1-*a*]isoquinolin-2(11*bH*)-one (6m)

¹H NMR (400 MHz, CDCl₃) δ : 1.06 (t, J = 7.4 Hz, 3H), 2.21 (s, 3H), 2.41-2.48 (m, 2H), 4.25 (d, J = 13.6 Hz, 1H), 5.35 (d, J = 13.6 Hz, 1H), 5.68 (d, J = 7.6 Hz, 1H), 5.88 (d, J = 7.6 Hz, 1H), 6.48 (d, J = 8.0 Hz, 1H), 6.62 (t, J = 7.2 Hz, 1H), 6.90-7.04 (m, 4H), 7.24 (d, J = 2.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 14.2, 16.9, 19.0, 57.5, 63.7, 104.5, 121.8, 123.7, 125.3, 126.5, 126.7, 127.1, 127.4, 127.8, 128.3, 130.5, 130.6, 137.1, 152.7, 191.7. MS: m/z 316 [MH]⁺. HRMS calcd for C₂₂H₂₂NO: 316.1701 [M+H], found: 316.1691.

3-Ethyl-1-(4-methoxyphenyl)-4-methyl-1*H*-pyrido [2,1-*a*]isoquinolin-2(11*bH*)-one (6n)

¹H NMR (400 MHz, CDCl₃) δ : 1.04 (t, *J* = 7.2 Hz, 3H), 2.19 (s, 3H), 2.39-2.48 (m, 2H), 3.78 (s, 3H), 4.18 (d, *J* = 12.8 Hz, 1H), 5.29 (d, *J* = 13.6 Hz, 1H), 5.66 (d, *J* = 8.0 Hz, 1H), 5.93 (d, *J* = 8.0 Hz, 1H), 6.47 (d, *J* = 7.6 Hz, 1H), 6.65 (t, *J* = 7.6 Hz, 1H), 6.79 (d, *J* = 7.6 Hz, 2H), 6.85 (d, *J* = 8.0 Hz, 2H), 6.90 (d, *J* = 7.6 Hz, 1H), 7.02 (t, *J* = 7.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ : 14.2, 16.8, 18.9, 55.3, 56.6, 63.8, 104.4, 113.8, 121.7, 123.6, 125.3, 126.4, 126.8, 127.6, 127.7, 129.2, 130.5, 131.5, 152.5, 158.7, 192.0. MS: m/z 346 [MH]⁺. HRMS calcd for C₂₃H₂₄NO₂: 346.1807 [M+H], found: 346.1809.

4-Ethyl-1-phenyl-1*H*-pyrido [2,1-*a*]isoquinolin-2(11*bH*)-one (60)

¹H NMR (400 MHz, CDCl₃) δ : 1.24-1.29 (m, 3H), 2.53 (q, J = 7.6 Hz, 2H), 3.83 (d, J = 4.0 Hz, 1H), 5.45 (d, J = 8.4 Hz, 1H), 5.51 (s, 1H), 5.84 (d, J = 4.4 Hz, 1H), 6.51 (d, J = 8.0 Hz, 1H), 6.83-6.85 (m, 1H), 7.05-7.17 (m, 7H). ¹³C NMR (100 MHz, CDCl₃) δ : 11.7, 26.2, 55.7, 62.2, 104.2, 105.2, 124.3, 125.1, 127.0, 127.2, 127.9, 128.1, 128.2, 128.8, 129.9, 134.4, 161.2, 191.9. MS: m/z 302 [MH]⁺. HRMS calcd for C₂₁H₂₀NO: 302.1545 [M+H], found: 302.1547.

1-Phenyl-4-propyl-1*H*-pyrido [2,1-*a*]isoquinolin-2(11*bH*)-one (6p)

¹H NMR (400 MHz, CDCl₃) δ : 1.00 (t, J = 7.4 Hz, 3H), 1.64 (q, J = 7.6 Hz, 2H), 2.34-2.55 (m, 2H), 4.21 (d, J = 12.0 Hz, 1H), 5.40 (d, J = 12.8 Hz, 1H), 5.60 (s, 1H), 5.77 (d, J = 8.0 Hz, 1H), 6.02 (d, J = 8.0 Hz, 1H), 6.53 (d, J = 7.6 Hz, 1H), 6.66-6.70 (m, 1H), 6.94 (d, J = 7.6 Hz, 1H), 7.04-7.08 (m, 3H), 7.26-7.30 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 13.8, 20.4, 35.1, 57.1, 63.8, 106.4, 107.8, 124.1, 125.6, 125.7, 127.2, 127.3, 127.4, 127.9, 128.5, 130.48, 130.52, 136.9, 160.5, 192.4. MS: m/z 316 [MH]⁺. HRMS calcd for C₂₂H₂₂NO: 316.1701 [M+H], found: 316.1704.

1-(4-Methoxyphenyl)-4-propyl-1*H*-pyrido[2,1-*a*]isoquinolin-2(11*bH*)-one (6q)

¹H NMR (400 MHz, CDCl₃) δ : 0.99 (t, J = 7.2 Hz, 3H), 1.63 (q, J = 7.2 Hz, 2H), 2.33-2.55 (m, 2H), 3.79 (s, 3H), 4.14 (d, J = 12.0 Hz, 1H), 5.34 (d, J = 12.4 Hz, 1H), 5.57 (s, 1H), 5.75 (d, J = 7.6 Hz, 1H), 6.07 (d, J = 7.6 Hz, 1H), 6.51 (d, J = 7.6 Hz, 1H), 6.71 (t, J = 7.6 Hz, 1H), 6.82 (d, J = 8.8 Hz, 2H), 6.92-6.96 (m, 3H), 7.06 (t, J = 7.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ : 13.8, 20.4, 35.1, 55.3, 56.2, 63.8, 106.3, 107.7, 114.0, 124.0, 125.6, 125.7, 127.3, 127.5, 127.8, 128.9, 130.5, 131.4, 158.9, 160.4, 192.7. MS: m/z 346 [MH]⁺. HRMS calcd for C₂₃H₂₄NO₂: 346.1807 [M+H], found: 346.1810.

7-Ethyl-6-methyl-9-phenyl-9,9*a*-dihydro-8*H*-pyrido[1,2-*f*]phenanthridin-8-one (6r)

¹H NMR (400 MHz, CDCl₃) δ: 0.81-1.85 (m, 3H), 1.82 (s, 3H), 2.04-2.11 (m, 1H), 2.40-2.46 (m, 1H), 4.39 (s, 1H), 4.94 (s, 1H), 7.21-7.54 (m, 11H), 7.79-7.83 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ: 14.2, 17.7, 18.5, 50.0, 62.7, 114.8, 124.3, 125.0, 126.7, 127.0, 127.3, 127.7, 127.9, 128.17, 128.19, 128.7, 130.8, 132.5, 136.5, 138.5, 142.0, 154.3, 189.3. MS: m/z 366 [MH]⁺. HRMS calcd for C₂₆H₂₄NO: 366.1858 [M+H], found: 366.1860.

3. The typical procedure for the synthesis of 4-methyl-1-phenyl-2*H*-quinolizin-2-one (4a)

To a flask containing pyridine (**2a**, 1 mmol), AcOH (0.2 mmol), EtOH (95%, 2 mL) was added 1-phenylpenta-3,4-dien-2-one (**1a**, 1 mmol). The mixture was stirred at 80 °C for 12 h. Upon completion, the resulting mixture was treated with water (3 mL), and the mixture was let to stand at 0 °C overnight. The solids thus precipitated were collected by filtration to give **4a**. **4a-4n** and **7a-7f** were obtained in a similar

manner.

4-Methyl-1-phenyl-2*H*-quinolizin-2-one (4a)

¹H NMR (400 MHz, CDCl₃) δ: 2.57 (s, 3H), 6.64 (t, *J* = 7.2 Hz, 1H), 6.89 (s, 1H), 6.94-6.98 (m, 1H), 7.15 (d, *J* = 9.2 Hz, 1H), 7.26-7.35 (m, 3H), 7.41-7.45 (m, 2H), 7.81 (d, *J* = 7.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ: 20.4, 112.5, 123.4, 123.5, 127.5, 127.8, 127.9, 128.8, 131.1, 134.7, 140.9, 142.7, 173.6. MS: m/z 236 [MH]⁺. HRMS calcd for C₁₆H₁₄NO: 236.1075 [M+H], found: 236.1078.

1-(4-Fluorophenyl)-4-methyl-2H-quinolizin-2-one (4b)

¹H NMR (400 MHz, CDCl₃) δ: 2.64 (s, 3H), 6.74 (t, *J* = 6.4 Hz, 1H), 7.02-7.30 (m, 7H), 7.89 (d, *J* = 7.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ: 20.6, 114.5, 115.9, 116.1, 121.9, 123.7, 128.6, 129.2, 129.4, 132.7, 132.8, 141.9, 143.4, 161.3, 163.7, 174.1. MS: m/z 254 [MH]⁺. HRMS calcd for C₁₆H₁₃FNO: 254.0981 [M+H], found: 254.0985.

1-Benzyl-4-methyl-2*H*-quinolizin-2-one (4c)

¹H NMR (400 MHz, CDCl₃) δ : 2.55 (s, 3H), 4.23 (s, 2H), 6.66 (t, J = 6.8 Hz, 1H), 6.97 (s, 1H), 7.07-7.25 (m, 6H), 7.43 (d, J = 9.6 Hz, 1H), 7.80 (d, J = 7.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ : 20.3, 29.8, 112.5, 122.2, 122.5, 125.9, 128.30, 128.34, 128.37, 128.44, 140.4, 140.5, 142.6, 174.1. MS: m/z 250 [MH]⁺. HRMS calcd for C₁₇H₁₆NO: 250.1232 [M+H], found: 250.1230.

3,4-Dimethyl-1-phenyl-2*H*-quinolizin-2-one (4d)

¹H NMR (400 MHz, CDCl₃) δ : 2.33 (s, 3H), 2.60 (s, 3H), 6.58 (t, *J* = 6.8 Hz, 1H), 6.90 (t, *J* = 7.6 Hz, 1H), 7.13 (d, *J* = 9.2 Hz, 1H), 7.30 (t, *J* = 8.4 Hz, 3H), 7.41 (t, *J* = 7.2 Hz, 2H), 7.87 (d, *J* = 7.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ :13.3, 16.9, 112.0, 120.9, 123.1, 127.0, 127.1, 127.9, 128.6, 130.1, 131.3, 135.6, 137.4, 141.4, 172.7. MS: m/z 250 [MH]⁺. HRMS calcd for C₁₇H₁₆NO: 250.1232 [M+H], found: 250.1221.

3-Ethyl-1-(4-methoxyphenyl)-4-methyl-2*H*-quinolizin-2-one (4e)

¹H NMR (400 MHz, CDCl₃) δ : 1.14 (t, J = 7.6 Hz, 3H), 2.60 (s, 3H), 2.86 (q, J = 7.6 Hz, 2H), 3.80 (s, 3H),

6.56 (t, *J* = 7.2 Hz, 1H), 6.87-6.91 (m, 1H), 6.95 (t, *J* = 8.8 Hz, 2H),7.18 (d, *J* = 8.8 Hz, 1H), 7.23 (d, *J* = 8.8 Hz, 2H), 7.85 (d, *J* = 7.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ: 13.4, 16.4, 20.6, 55.3, 111.8, 114.0, 121.0, 123.3, 126.8, 127.6, 127.9, 132.4, 135.7, 137.1, 141.5, 158.7, 172.3. MS: m/z 294 [MH]⁺. HRMS calcd for C₁₉H₂₀NO₂: 294.1494 [M+H], found: 294.1495.

1-(4-Methoxyphenyl)-4-propyl-2*H*-quinolizin-2-one (4f)

¹H NMR (400 MHz, CDCl₃) δ: 1.08 (t, *J* = 7.4 Hz, 3H), 1.78 (q, *J* = 7.6 Hz, 2H), 2.80 (t, *J* = 7.6 Hz, 2H), 3.62 (s, 3H), 3.84 (s, 3H), 6.37 (d, *J* = 7.6 Hz, 2H), 6.77 (s, 1H), 6.99 (d, *J* = 8.4 Hz, 2H), 7.24 (d, *J* = 8.4 Hz, 2H), 7.79 (d, *J* = 7.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ: 13.8, 20.1, 34.7, 55.3, 55.5, 98.2, 108.0, 114.4, 120.4, 121.0, 127.5, 129.2, 132.1, 143.4, 145.4, 157.9, 158.8, 173.4. MS: m/z 294 [MH]⁺. HRMS calcd for C₁₉H₂₀NO₂: 294.1494 [M+H], found: 294.1498.

1-(4-Fluorophenyl)-4,8-dimethyl-2*H*-quinolizin-2-one (4g)

¹H NMR (400 MHz, CDCl₃) δ : 2.21 (s, 3H), 2.62 (s, 3H), 6.60 (dd, $J_I = 7.2$ Hz, $J_2 = 2.0$ Hz, 1H), 6.94 (d, J = 12.0 Hz, 2H), 7.16 (t, J = 8.6 Hz, 2H), 7.26-7.29 (m, 2H), 7.83 (d, J = 8.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ : 20.6, 21.3, 115.9, 116.1, 117.5, 120.4, 121.1, 121.3, 128.2, 129.36, 129.40, 132.7, 132.8, 141.3, 141.6, 143.6, 170.2. MS: m/z 268 [MH]⁺. HRMS calcd for C₁₇H₁₅FNO: 268.1138 [M+H], found: 268.1145.

1-Benzyl-4,8-dimethyl-2*H*-quinolizin-2-one (4h)

¹H NMR (400 MHz, CDCl₃) δ : 2.21 (s, 3H), 2.48 (s, 3H), 4.18 (s, 2H), 6.47 (dd, $J_1 = 7.2$ Hz, $J_2 = 1.6$ Hz, 1H), 6.83 (s, 1H), 7.09-7.22 (m, 6H), 7.68 (d, J = 7.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ : 20.2, 21.4, 29.8, 115.2, 119.0, 119.7, 122.0, 125.8, 127.8, 128.2, 128.3, 128.4, 139.5, 140.1, 140.6, 142.8, 174.1. MS: m/z 264 [MH]⁺. HRMS calcd for C₁₈H₁₈NO: 264.1388 [M+H], found: 264.1385.

3,4,8-Trimethyl-1-phenyl-2*H*-quinolizin-2-one (4i)

¹H NMR (400 MHz, CDCl₃) δ : 2.08 (s, 3H), 2.28 (s, 3H), 2.52 (s, 3H), 6.39 (dd, $J_1 = 7.2$ Hz, $J_2 = 2.0$ Hz, 1H), 6.83 (s, 1H), 7.25-7.29 (m, 3H), 7.38 (t, J = 7.6 Hz, 2H), 7.78 (d, J = 7.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ: 13.2, 16.9, 20.9, 114.8, 119.4, 120.3, 126.9, 127.6, 128.5, 129.3, 131.3, 136.0, 137.1, 138.1, 141.6, 172.7. MS: m/z 264 [MH]⁺. HRMS calcd for C₁₈H₁₈NO: 264.1388 [M+H], found: 264.1389.

8-Methoxy-4-methyl-1-phenyl-2*H*-quinolizin-2-one (4j)

¹H NMR (400 MHz, CDCl₃) δ : 2.52 (s, 3H), 3.59 (s, 3H), 6.31 (s, 1H), 6.38-6.40 (m, 1H), 6.75 (s, 1H), 7.26-7.33 (m, 3H), 7.43 (t, *J* = 7.6 Hz, 2H), 7.75 (d, *J* = 8.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ : 20.3, 55.5, 97.9, 108.3, 120.8, 121.9, 127.4, 128.9, 129.7, 131.0, 135.4, 140.2, 145.1, 158.2, 173.1. MS: m/z 266 [MH]⁺. HRMS calcd for C₁₇H₁₆NO₂: 266.1181 [M+H], found: 266.1188.

8-Methoxy-1-(4-methoxyphenyl)-4-methyl-2*H*-quinolizin-2-one (4k)

¹H NMR (400 MHz, CDCl₃) δ : 2.53 (s, 3H), 3.62 (s, 3H), 3.82 (s, 3H), 6.36-6.42 (m, 2H), 6.77 (s, 1H), 6.98 (d, J = 8.4 Hz, 2H), 7.23 (d, J = 9.2 Hz, 2H), 7.75 (d, J = 8.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ : 20.3, 55.3, 55.5, 98.0, 108.3, 114.4, 121.7, 127.3, 129.6, 132.1, 140.0, 145.3, 158.1, 158.8, 173.2. MS: m/z 296 [MH]⁺. HRMS calcd for C₁₈H₁₈NO₃: 296.1287 [M+H], found: 296.1277.

8-Methoxy-3,4-dimethyl-1-phenyl-2*H*-quinolizin-2-one (4l)

¹H NMR (400 MHz, CDCl₃) δ: 2.26 (s, 3H), 2.50 (s,. 3H), 3.53 (s, 3H), 6.25-6.30 (m, 2H), 7.25-7.28 (m, 3H), 7.38 (t, J = 7.4 Hz, 2H), 7.80 (d, J = 7.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ: 13.0, 16.9, 55.3, 97.4, 107.5, 118.5, 127.0, 128.1, 128.6, 130.0, 131.2, 136.3, 136.7, 143.7, 157.6, 172.3. MS: m/z 280 [MH]⁺. HRMS calcd for C₁₈H₁₈NO₂: 280.1338 [M+H], found: 280.1329.

8-Methoxy-3,4-dimethyl-1-*p*-tolyl-2*H*-quinolizin-2-one (4m)

¹H NMR (400 MHz, CDCl₃) δ : 2.25 (s, 3H), 2.32 (s, 3H), 2.49 (s, 3H), 3.55 (s, 3H), 6.25-6.30 (m, 2H), 7.15-7.19 (m, 4H), 7.78 (d, *J* = 7.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ : 13.0, 16.9, 21.3, 55.4, 97.5, 107.4, 118.5, 128.0, 129.4, 129.9, 131.0, 133.1, 136.4, 136.5, 143.7, 157.4, 172.5. MS: m/z 294 [MH]⁺. HRMS calcd for C₁₉H₂₀NO₂: 294.1494 [M+H], found: 294.1495.

3-Ethyl-8-methoxy-1-(4-methoxyphenyl)-4-methyl-2*H*-quinolizin-2-one (4n)

¹H NMR (400 MHz, CDCl₃) δ : 1.12 (t, *J* = 7.6 Hz, 3H), 2.54 (s, 3H), 2.81 (q, *J* = 7.6 Hz, 2H), 3.59 (s, 3H), 3.80 (s, 3H), 6.28-6.34 (m, 2H), 6.94-6.96 (m, 2H), 7.23-7.26 (m, 2H), 7.78 (d, *J* = 8.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ : 13.5, 16.4, 20.3, 55.3, 55.4, 97.5, 107.3, 114.1, 118.6, 128.3, 129.7, 132.3, 133.9, 136.2, 143.8, 157.3, 158.4, 172.1. MS: m/z 324 [MH]⁺. HRMS calcd for C₂₀H₂₂NO₃: 324.1600 [M+H], found: 324.1602.

1-Methyl-4-phenyl-3*H*-pyrido[1,2-*a*]quinolin-3-one (7a)

¹H NMR (400 MHz, CDCl₃) δ : 2.77 (s, 3H), 6.87 (s, 1H), 6.97 (d, J = 9.2 Hz, 1H), 7.15 (d, J = 9.2 Hz, 1H), 7.32-7.50 (m, 7H), 7.56 (d, J = 7.6 Hz, 1H), 7.66 (d, J = 8.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ : 23.7, 122.0, 123.2, 123.5, 126.1, 126.2, 127.90, 127.93, 128.0, 128.6, 128.7, 131.3, 134.0, 134.8, 142.7, 145.6, 175.6. MS: m/z 286 [MH]⁺. HRMS calcd for C₂₀H₁₆NO: 286.1232 [M+H], found: 286.1235.

4-(4-Methoxyphenyl)-1-methyl-3*H*-pyrido[1,2-*a*]quinolin-3-one (7b)

¹H NMR (400 MHz, CDCl₃) δ : 2.76 (s, 3H), 3.84 (s, 3H), 6.90 (s, 1H), 6.98-7.04 (m, 3H), 7.16 (d, *J* = 9.6 Hz, 1H), 7.26 (d, *J* = 8.4 Hz, 1H), 7.42-7.58 (m, 4H), 7.66 (d, *J* = 8.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ : 23.7, 55.3, 114.2, 122.0, 123.2, 126.2, 126.3, 127.88, 127.93, 128.4, 128.5, 128.6, 132.2, 132.5, 134.8, 142.7, 145.6, 159.3, 175.7. MS: m/z 316 [MH]⁺. HRMS calcd for C₂₁H₁₈NO₂: 316.1338 [M+H], found: 316.1340.

1-(4-Methoxyphenyl)-4-methyl-2*H*-pyrido[2,1-*a*]isoquinolin-2-one (7c)

¹H NMR (400 MHz, CDCl₃) δ : 2.59 (s, 3H), 3.84 (s, 3H), 6.79 (d, J = 6.8 Hz, 2H), 6.95-7.02 (m, 3H), 7.20 (s, 2H), 7.37-7.44 (m, 3H), 7.56 (d, J = 7.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ : 21.3, 55.3, 113.1, 114.8, 124.0, 126.0, 126.8, 129.9, 130.6, 131.3, 131.9, 141.1, 142.2, 148.2, 159.0, 175.1. MS: m/z 316 [MH]⁺. HRMS calcd for C₂₁H₁₈NO₂: 316.1338 [M+H], found: 316.1346.

4-Methyl-1-*p*-tolyl-2*H*-pyrido[2,1-*a*]isoquinolin-2-one (7d)

¹H NMR (400 MHz, CDCl₃) δ : 2.39 (s, 3H), 2.59 (s, 3H), 6.79 (d, J = 8.4 Hz, 2H), 6.98 (t, J = 7.2 Hz, 1H), 7.15-7.23 (m, 4H), 7.35-7.43 (m, 3H), 7.56 (d, J = 7.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ : 21.2, 21.4, 113.0, 124.0, 125.9, 126.0, 126.7, 129.9, 130.0, 130.5, 130.7, 131.3, 134.5, 137.2., 142.2, 153.1, 175.2. MS: m/z 300 $[MH]^+$. HRMS calcd for C₂₁H₁₈NO: 300.1388 [M+H], found: 300.1381.

1-(4-Fluorophenyl)-3,4-dimethyl-2*H*-pyrido[2,1-*a*]isoquinolin-2-one (7e)

¹H NMR (400 MHz, CDCl₃) δ : 2.31 (s, 3H), 2.64 (s, 3H), 6.79 (d, J = 7.2 Hz, 1H), 7.00-7.11 (m, 3H), 7.23-7.43 (m, 5H), 7.64 (d, J = 7.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ : 12.9, 17.6, 112.3, 115.9, 116.1, 123.5, 124.5, 125.6, 125.8, 126.6, 127.1, 129.8, 130.4, 131.2, 132.7, 132.8, 134.18, 134.21, 139.8, 140.3, 140.7, 145.3, 160.9, 163.4, 175.3. MS: m/z 318 [MH]⁺. HRMS calcd for C₂₁H₁₇FNO: 318.1294 [M+H], found: 318.1284.

4-Benzyl-2*H*-pyrido[2,1-*a*]isoquinolin-2-one (7f)

¹H NMR (400 MHz, CDCl₃) δ : 4.29 (s, 2H), 6.77 (d, *J* = 7.6 Hz, 1H), 6.85 (d, *J* = 1.2 Hz, 1H), 7.18 (d, *J* = 7.2 Hz, 2H), 7.27-7.35 (m, 4H), 7.50 (d, *J* = 7.6 Hz, 1H), 7.52-7.62 (m, 2H), 7.66 (d, *J* = 1.6 Hz, 1H), 7.26 (d, *J* = 8.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ : 39.9, 109.4, 113.8, 122.9, 123.9, 124.6, 125.3, 126.9, 127.7, 128.1, 129.2, 129.4, 131.4, 134.6, 144.2, 145.4, 174.4, 176.6, 185.7. MS: m/z 286 [MH]⁺. HRMS calcd for C₂₀H₁₆NO: 286.1232 [M+H], found: 286.1235.

Electronic Supplementary Material (ESI) for Green Chemistry This journal is o The Royal Society of Chemistry 2013

III. Copies of ¹H and ¹³C NMR spectra of compounds 6a-6r

266 254 246 237

IV. Copies of ¹H and ¹³C NMR spectra of compounds 4a-4n

Electronic Supplementary Material (ESI) for Green Chemistry This journal is O The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Green Chemistry This journal is o The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Green Chemistry This journal is O The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Green Chemistry This journal is O The Royal Society of Chemistry 2013

VI. E-factors of the overall process for the synthesis of 3a and 4a.

1. E-factor of the overall process for the synthesis of 3a run on a 100 mmol scale.

1.1 Synthetic procedure toward 4-methyl-1-phenyl-1*H*-quinolizin-2(9*aH*)-one (3a) starting from commercially available 2-phenylacetaldehyde (I) and 3-bromoprop-1-yne (II)

Step 1. Preparation of 1-phenylpent-4-yn-2-ol (**III**): To a flask containing 2-phenylacetaldehyde (**I**, 24.30 g, 200 mmol), THF (100 mL), propargyl bromide (**II**, 47.18 g, 400 mmol) were added activated zinc dust (38.36 g, 600 mmol) portion-wise with stirring. The mixture was then stirred at room temperature. Upon completion, it was treated with NH₄Cl (21.20 g, 400 mmol). Then, the mixture was filtrated and the filtrate was concentrated under vacuum.

Step 2. Preparation of 1-phenylpenta-3,4-dien-2-one (**1a**): To a solution of the residue resulting from step 1 in acetone (450 mL) cooled to 0 °C was added Jones reagent (79.20 mL) in a dropwise manner. Upon complete consumption of the starting material as monitored by TLC, the reaction mixture was dried over Na₂SO₄. Then, the solvent was filtered and the filtrate was concentrated under vacuum. The residue were purified by column chromatography on silica gel with EtOAc/petroleum (20%) to give 1-phenylpenta-3,4-dien-2-one (**1a**, 25.61 g, 81% as an overall yield from **I**).

Step 3. Preparation of 4-methyl-1-phenyl-1*H*-quinolizin-2(9*aH*)-one (**3a**): To a flask containing pyridine (**2a**, 7.90 g, 100 mmol), AcOH (1.20 g, 20 mmol), EtOH (95%, 50 mL) was added 1-phenylpenta-3,4-dien-2-one (**1a**, 15.81 g, 100 mmol). The mixture was stirred at rt for 2 h. Upon completion, the resulting mixture was treated with water (100 mL), and the mixture was let to stand at 0 °C overnight. The solids thus precipitated were collected by filtration to give **3a** (17.78 g, 75%).

1.2 Mass balance and E-factor of the overall process for the synthesis of 3a starting from commercially available 2-phenylacetaldehyde (I) and 3-bromoprop-1-yne (II)⁴

Input	Quantity/kg	Output	Quantity/kg
THF	3.0864	THF	3.0864
Zn	1.3314	Inorganic salts	2.0673
NH ₄ Cl	0.7359		
Jones' reagent	3.7487	Inorganic salts	8.2471
Na ₂ SO ₄	4.4984		
Acetone	12.2534	Acetone	12.2534
Silica gel	5.6230	Silica gel	5.6230
EtOAc	2.0288	EtOAc	2.0288
Petroleum	7.1975	Petroleum	7.1975
АсОН	0.0675	AcOH	0.0675
EtOH (95%)	0.4694	EtOH (95%)	0.4694
2-phenylacetaldehyde	0.8334	By-products	1.9153
3-bromoprop-1-yne	1.6375		
Pyridine 2a	0.4444	4-Methyl-1-phenyl-1 <i>H</i> -quinol	1.0
		izin-2(9 <i>aH</i>)-one 3a	
Total	43.9557	Total	43.9557
		E-factor ^b	43

Table 1 Mass balance ^{*a*} and E-factor of the overall process to **3a**.

^{*a*} Mass balance calculated for the hypothetical production of 1 kg 4-methyl-1-phenyl-1*H*-quinolizin-2(9*aH*)-one (**3a**). ^{*b*} E-factor = (amount of total waste)[kg]/(amount of product)[kg]; the E-factor was given above without decimal places (E = 43); the calculated E-factor with decimal places is 42.9557.

2. E-factor of the overall process for the synthesis of 4a run on a 100 mmol scale.

2.1 Synthetic procedure toward 4-methyl-1-phenyl-2*H*-quinolizin-2-one (4a) starting from commercially available 2-phenylacetaldehyde (I) and 3-bromoprop-1-yne (II)

Step 1. Preparation of 1-phenylpent-4-yn-2-ol (**III**): To a flask containing 2-phenylacetaldehyde (**I**, 24.30 g, 200 mmol), THF (100 mL), propargyl bromide (**II**, 47.18 g, 400 mmol) were added activated zinc dust (38.36 g, 600 mmol) portion-wise with stirring. The mixture was then stirred at room temperature. Upon completion, it was treated with NH₄Cl (21.20 g, 400 mmol). Then, the mixture was filtrated and the filtrate was concentrated under vacuum.

Step 2. Preparation of 1-phenylpenta-3,4-dien-2-one (**1a**): To a solution of the residue resulting from step 1 in acetone (450 mL) cooled to 0 °C was added Jones reagent (79.20 mL) in a dropwise manner. Upon complete consumption of the starting material as monitored by TLC, the reaction mixture was dried over Na₂SO₄. Then, the solvent was filtered and the filtrate was concentrated under vacuum. The residue were purified by column chromatography on silica gel with EtOAc/petroleum (20%) to give 1-phenylpenta-3,4-dien-2-one (**1a**, 25.61 g, 81% as an overall yield from **I**).

Step 3. Preparation of 4-methyl-1-phenyl-2*H*-quinolizin-2-one (**4a**): To a flask containing pyridine (**2a**, 7.90 g, 100 mmol), AcOH (1.20 g, 20 mmol), EtOH (95%, 50 mL) was added 1-phenylpenta-3,4-dien-2-one (**1a**, 15.81 g, 100 mmol). The mixture was stirred at 80 °C for 12 h. Upon completion, the resulting mixture was treated with water (100 mL), and the mixture was let to stand at 0 °C overnight. The solids thus precipitated were collected by filtration to give **4a** (15.28 g, 65%).

2.2 Mass balance and E-factor of the overall process for the synthesis of 4a starting from commercially available 2-phenylacetaldehyde (I) and 3-bromoprop-1-yne (II)⁴

Input	Quantity/kg	Output	Quantity/kg
THF	3.5920	THF	3.5920
Zn	1.5494	Inorgania solta	2.4058
NH ₄ Cl	0.8564	morganic saits	
Jones' reagent	4.3627	Inorganic salts	9.5980

Table 2 Mass balance ^{*a*} and E-factor of the overall process to **4a**.

Na ₂ SO ₄	5.2353		
Acetone	14.2605	Acetone	14.2605
Silica gel	6.5441	Silica gel	6.5441
EtOAc	2.3611	EtOAc	2.3611
Petroleum	8.3764	Petroleum	8.3764
АсОН	0.0785	АсОН	0.0785
EtOH (95%)	1.0925	EtOH (95%)	0.5462
O ₂	0.0105		2.4034
2-phenylacetaldehyde	0.9700	By-products	
3-bromoprop-1-yne	1.9057	4-Methyl-1-phenyl-2 <i>H</i> -quinolizi 1.0 n-2-one 4a	1.0
Pyridine 2a	0.5172		1.0
Total	51.7123	Total	51.1660
		E-factor ^b	50

^{*a*} Mass balance calculated for the hypothetical production of 1 kg 4-Methyl-1-phenyl-2*H*-quinolizin-2-one **4a**. ^{*b*} E-factor = (amount of total waste)[kg]/(amount of product)[kg]; the E-factor was given above without decimal places (E = 50); the calculated E-factor with decimal places is 50.1660.

VII. References

- (1) A. Sniady, M. S. Morreale and R. Dembinski, Org. Synth., 2007, 84, 199.
- (2) W. L. Wu, Z. J. Yao, Y. L. Li, J. C. Li, Y. Xia and Y. L. Wu, J. Org. Chem., 1995, 60, 3257.
- (3) N. A. Petasis and K. A. Teets, J. Am. Chem. Soc., 1992, 114, 10328.
- (4) M. Weiß, T. Brinkmann and H. Gröger, Green Chem., 2010, 12, 1580.