Biobased furandicarboxylic acids (FDCAs): effects of isomeric substitution on polyester synthesis and properties

Shanmugam Thiyagarajan, Willem Vogelzang, Rutger Knoopp, Augustinus E. Frissen, Jacco van Haveren, and Daan S. van Es

a Food & Bio-based Research, Wageningen University and Research Centre, P.O. Box 17, 6700 AA Wageningen, The Netherlands
Fax: +31 317 483011; Tel: +31 317 481160
E-mail: daan.vanes@wur.nl; shanmugam.thiyagarajan@wur.nl

b Dutch Polymer Institute, P.O. Box 902, 5600 AX, Eindhoven, The Netherlands

Supporting information:
Contents:
Figure 1: 13C NMR spectrum of Poly(1,2-ethylene-2,5-furandicarboxylate) (2,5-PEF)
Figure 2: 13C NMR spectrum of Poly(1,2-ethylene-2,4-furandicarboxylate) (2,4-PEF)
Figure 3: 13C NMR spectrum of Poly(1,2-ethylene-3,4-furandicarboxylate) (3,4-PEF)
Figure 4: 1H NMR spectrum of Poly(1,3-propylene-2,5-furandicarboxylate) (2,5-PPF)
Figure 5: 13C NMR spectrum of Poly(1,3-propylene-2,5-furandicarboxylate) (2,5-PPF)
Figure 6: 1H NMR spectrum of Poly(1,3-propylene-2,4-furandicarboxylate) (2,4-PPF)
Figure 7: 13C NMR spectrum of Poly(1,3-propylene-2,4-furandicarboxylate) (2,4-PPF)
Figure 8: 1H NMR spectrum of Poly(1,3-propylene-3,4-furandicarboxylate) (3,4-PPF)
Figure 9: 13C NMR spectrum of Poly(1,3-propylene-3,4-furandicarboxylate) (3,4-PPF)
Figure 10: 1H NMR spectrum of Poly(1,4-butylene-2,5-furandicarboxylate) (2,5-P14BF)
Figure 11: 13C NMR spectrum of Poly(1,4-butylene-2,5-furandicarboxylate) (2,5-P14BF)
Figure 12: 1H NMR spectrum of Poly(1,4-butylene-2,4-furandicarboxylate) (2,4-P14BF)
Figure 13: 13C NMR spectrum of Poly(1,4-butylene-2,4-furandicarboxylate) (2,4-P14BF)
Figure 14: 1H NMR spectrum of Poly(1,4-butylene-3,4-furandicarboxylate) (3,4-P14BF)
Figure 15: 13C NMR spectrum of Poly(1,4-butylene-3,4-furandicarboxylate) (3,4-P14BF)
Figure 16: 1H NMR spectrum of Poly(2,3-butylene-2,5-furandicarboxylate) (2,5-P23BF)

Figure 17: 13C NMR spectrum of Poly(2,3-butylene-2,5-furandicarboxylate) (2,5-P23BF)

Figure 18: 1H NMR spectrum of Poly(2,3-butylene-2,4-furandicarboxylate) (2,4-P23BF)

Figure 19: 13C NMR spectrum of Poly(2,3-butylene-2,4-furandicarboxylate) (2,4-P23BF)

Figure 20: 1H NMR spectrum of Poly(2,3-butylene-3,4-furandicarboxylate) (3,4-P23BF)

Figure 21: 13C NMR spectrum of Poly(2,3-butylene-3,4-furandicarboxylate) (3,4-P23BF)

Figure 22: TGA traces of poly(1,3-propylene-furandicarboxylate)s

Figure 23: TGA traces of poly(1,4-butylene-furandicarboxylate)s

Figure 24: TGA traces of poly(2,3-butylene-furandicarboxylate)s

Figure 25. Second heating DSC curves of poly(1,3-propylene-furandicarboxylate)s derived from FDCA analogues.

Figure 26. Second heating DSC curves of poly(1,4-butylene-furandicarboxylate)s derived from FDCA analogues.

Figure 27. Second heating DSC curves of poly(2,3-butylene-furandicarboxylate)s derived from FDCA analogues.

Figure 28. Wide angle X-ray powder diffraction profiles of annealed 2,5-PEF (a) and amorphous 2,5-PEF (obtained by quench cooling from the melt), for comparison and calculating the degree of crystallinity.

Figure 29. Wide angle X-ray powder diffraction profiles of precipitated 3,4-PEF and amorphous 3,4-PEF (obtained by quench cooling from the melt), for comparison and calculating the degree of crystallinity.

Figure 30. DSC curves of 2,5-PEF (a), annealed at 175 °C for 15 h. DSC runs were performed from -60 to 230 °C at a heating/cooling rate of 10 °C/min.

Figure 31. Zoom-in (3-6 ppm) of 1H NMR spectra of (a) 2,5-PEF; (b) 2,4-PEF and (c) 3,4-PEF in CDCl$_3$/TFA-d (6:1). The pink asterisk indicate end groups, the black square indicate the presence of DEG groups and the blue arrow indicate the 13C satellites shouldering the main peaks.

Note:
1. All the NMR spectra were recorded using CDCl$_3$ and TFA-d (6:1) mixture.
Figure 1: 13C NMR spectrum of Poly(1,2-ethylene-2,5-furandicarboxylate) (2,5-PEF)

Figure 2: 13C NMR spectrum of Poly(1,2-ethylene-2,4-furandicarboxylate) (2,4-PEF)
Figure 3: 13C NMR spectrum of Poly(1,2-ethylene-3,4-furandicarboxylate) (3,4-PEF)

Figure 4: 1H NMR spectrum of Poly(1,3-propylene-2,5-furandicarboxylate) (2,5-PPF)
Figure 5: 13C NMR spectrum of Poly(1,3-propylene-2,5-furandicarboxylate) (2,5-PPF)

Figure 6: 1H NMR spectrum of Poly(1,3-propylene-2,4-furandicarboxylate) (2,4-PPF)
Figure 7: 13C NMR spectrum of Poly(1,3-propylene-2,4-furandicarboxylate) (2,4-PPF)

Figure 8: 1H NMR spectrum of Poly(1,3-propylene-3,4-furandicarboxylate) (3,4-PPF)
Figure 9: 13C NMR spectrum of Poly(1,3-propylene-3,4-furandicarboxylate) (3,4-PPF)

Figure 10: 1H NMR spectrum of Poly(1,4-butylene-2,5-furandicarboxylate) (2,5-P14BF)
Figure 11: 13C NMR spectrum of Poly(1,4-butylene-2,5-furandicarboxylate) (2,5-P14BF)

Figure 12: 1H NMR spectrum of Poly(1,4-butylene-2,4-furandicarboxylate) (2,4-P14BF)
Figure 13: 13C NMR spectrum of Poly(1,4-butylene-2,4-furandicarboxylate) (2,4-P14BF)

Figure 14: 1H NMR spectrum of Poly(1,4-butylene-3,4-furandicarboxylate) (3,4-P14BF)
Figure 15: 13C NMR spectrum of Poly(1,4-butylene-3,4-furandicarboxylate) (3,4-P14BF)

Figure 16: 1H NMR spectrum of Poly(2,3-butylene-2,5-furandicarboxylate) (2,5-P23BF)
Figure 17: 13C NMR spectrum of Poly(2,3-butylene-2,5-furandicarboxylate) (2,5-P23BF)

Figure 18: 1H NMR spectrum of Poly(2,3-butylene-2,4-furandicarboxylate) (2,4-P23BF)
Figure 19: 13C NMR spectrum of Poly(2,3-butylene-2,4-furandicarboxylate) (2,4-P23BF)

Figure 20: 1H NMR spectrum of Poly(2,3-butylene-3,4-furandicarboxylate) (3,4-P23BF)
Figure 21: 13C NMR spectrum of Poly(2,3-butylene-3,4-furandicarboxylate) (3,4-P23BF)

Figure 22: TGA traces of poly(1,3-propylene-furandicarboxylate)s recorded from 30-600 °C at 10 °C/min under N$_2$ atmosphere.
Figure 23: TGA traces of poly(1,4-butylene-furandicarboxylate)s recorded from 30-600 °C at 10 °C/min under N₂ atmosphere.

Figure 24: TGA traces of poly(2,3-butylene-furandicarboxylate)s recorded from 30-600 °C at 10 °C/min under N₂ atmosphere.
Figure 25. Second heating DSC curves of poly(1,3-propylene-furandicarboxylate)s derived from FDCA analogues. The experiments were carried out from −60 to 230 °C at a heating/cooling rate of 10 °C/min.

Figure 26. Second heating DSC curves of poly(1,4-butylene-furandicarboxylate)s derived from FDCA analogues. The experiments were carried out from −60 to 230 °C at a heating/cooling rate of 10 °C/min.
Figure 27. Second heating DSC curves of poly(2,3-butylene-furandicarboxylate)s derived from FDCA analogues. The experiments were carried out from 0 to 200 °C at a heating/cooling rate of 10 °C/min.

Figure 28. Wide angle X-ray powder diffraction profiles of annealed 2,5-PEF (a) and amorphous 2,5-PEF (obtained by quench cooling from the melt), for comparison and calculating the degree of crystallinity.
Figure 29. Wide angle X-ray powder diffraction profiles of precipitated 3,4-PEF and amorphous 3,4-PEF (obtained by quench cooling from the melt), for comparison and calculating the degree of crystallinity.

Figure 30. DSC curves of 2,5-PEF (a), annealed at 175 °C for 15 h. DSC runs were performed from -60 to 230 °C at a heating/cooling rate of 10 °C/min.
Figure 31. Zoom-in (3-6 ppm) of 1H NMR spectra of (a) 2,5-PEF; (b) 2,4-PEF and (c) 3,4-PEF in CDCl$_3$/TFA-d (6:1). The pink asterisk indicate end groups, the black square indicate the presence of DEG groups and the blue arrow indicate the 13C satellites shouldering the main peaks.