Electronic Supplementary Information

Molybdenum based metallomicellar catalyst for controlled and selective sulfoxidation reactions in aqueous medium

R. D. Chakravarthy, V. Ramkumar and D. K. Chand

Department of Chemistry, Indian Institute of Technology Madras, Chennai, India.

E-mail: dillip@iitm.ac.in

CONTENTS

Figure S1: 1H-NMR spectrum of complex (C$_{19}$H42N)$_2$ [MoO(O$_2$)$_2$(C$_2$O$_4$)] · H$_2$O 3
Figure S2: 13C-NMR spectrum of complex (C$_{19}$H42N)$_2$[MoO(O$_2$)$_2$(C$_2$O$_4$)] · H$_2$O 4
Figure S3: ORTEP diagram of the complex (C$_{19}$H42N)$_2$ [MoO(O$_2$)$_2$(C$_2$O$_4$)] · H$_2$O with 50% thermal ellipsoids 5
Table S1: Crystallographic data and parameters for complex (C$_{19}$H42N)$_2$ [MoO(O$_2$)$_2$(C$_2$O$_4$)]·H$_2$O 5
Figure S4: Powder XRD pattern of the bulk complex (C$_{19}$H42N)$_2$ [MoO(O$_2$)$_2$(C$_2$O$_4$)]·H$_2$O compared with the simulated data 6
Figure S5: ESI-MS of complex (C$_{19}$H42N)$_2$[MoO(O$_2$)$_2$(C$_2$O$_4$)]·H$_2$O 7
Figure S6: Critical micellar concentration (CMC) of metallo-micelle obtained from a plot of specific conductance against concentration 8
Figure S7: Dynamic light scattering (DLS) histogram of CTAB 9
Figure S8: Dynamic light scattering (DLS) histogram of complex 1 9
Figure S9: Particle size distribution histogram from TEM image 9
Figure S10: 1H-NMR spectrum of 2-(4-(methylthio)phenyl)-1,3-dioxane 10
Figure S11: 13C-NMR spectrum of 2-(4-(methylthio)phenyl)-1,3-dioxane 11
Figure S12: ESI-HRMS of 2-(4-(methylthio)phenyl)-1,3-dioxane

Figure S13: 1H-NMR spectrum of 2-(4-(methylsulfinyl)phenyl)-1,3-dioxane

Figure S14: 13C-NMR spectrum of 2-(4-(methylsulfinyl)phenyl)-1,3-dioxane

Figure S15: ESI-HRMS of 2-(4-(methylsulfonyl)phenyl)-1,3-dioxane

Figure S16: 1H-NMR spectrum of 2-(4-(methylsulfonyl)phenyl)-1,3-dioxane

Figure S17: 13C-NMR spectrum of 2-(4-(methylsulfonyl)phenyl)-1,3-dioxane

Figure S18: ESI-HRMS of 2-(4-(methylsulfonyl)phenyl)-1,3-dioxane

Figure S19: 1H-NMR spectrum of N-(4-(methylthio)benzylidene)aniline

Figure S20: 13C-NMR spectrum of N-(4-(methylthio)benzylidene)aniline

Figure S21: ESI-HRMS of N-(4-(methylthio)benzylidene)aniline

Figure S22: 1H-NMR spectrum of N-(4-(methylsulfinyl)benzylidene)aniline

Figure S23: 13C-NMR spectrum of N-(4-(methylsulfinyl)benzylidene)aniline

Figure S24: ESI-HRMS of N-(4-(methylsulfinyl)benzylidene)aniline

Determination of critical micelle concentration of (C$_{19}$H$_{42}$N)$_2$ [MoO(O$_2$)$_2$(C$_2$O$_4$)]·H$_2$O

Procedure for the recyclability of the catalyst
Figure S1: 1H-NMR spectrum of complex $(C_{19}H_{42}N)_2[MoO(O_2)C_2O_4] \cdot H_2O$
Figure S2. 13C-NMR spectrum of complex (C$_{19}$H$_{42}$N)$_2$[MoO(O$_2$)$_2$(C$_2$O$_4$)]·H$_2$O
Figure S3: ORTEP diagram of the complex (C\textsubscript{19}H\textsubscript{42}N\textsubscript{2})\textsubscript{2}[MoO(O\textsubscript{2})\textsubscript{2}(C\textsubscript{2}O\textsubscript{4})]\cdot H\textsubscript{2}O with 50% thermal ellipsoids

Table S1: Crystallographic data and parameters for complex (C\textsubscript{19}H\textsubscript{42}N\textsubscript{2})\textsubscript{2}[MoO(O\textsubscript{2})\textsubscript{2}(C\textsubscript{2}O\textsubscript{4})]\cdot H\textsubscript{2}O

<table>
<thead>
<tr>
<th>Compound reference</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical formula</td>
<td>C\textsubscript{46}H\textsubscript{86}MoN\textsubscript{2}O\textsubscript{10}</td>
</tr>
<tr>
<td>Formula mass</td>
<td>851.05</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Triclinic</td>
</tr>
<tr>
<td>a/Å</td>
<td>9.7003(3)</td>
</tr>
<tr>
<td>b/Å</td>
<td>10.0807(4)</td>
</tr>
<tr>
<td>c/Å</td>
<td>26.1807(10)</td>
</tr>
<tr>
<td>α/°</td>
<td>88.397(2)</td>
</tr>
<tr>
<td>β/°</td>
<td>82.0730(10)</td>
</tr>
<tr>
<td>γ/°</td>
<td>69.8550(10)</td>
</tr>
<tr>
<td>Unit cell volume/Å3</td>
<td>2379.99(15)</td>
</tr>
<tr>
<td>Temperature/ K</td>
<td>298(2)</td>
</tr>
<tr>
<td>Space group</td>
<td>P-1</td>
</tr>
<tr>
<td>No. of formula unit per cell/ Z</td>
<td>2</td>
</tr>
<tr>
<td>Radiation type</td>
<td>Mo Ka</td>
</tr>
<tr>
<td>Absorption coefficient, m/ mm-1</td>
<td>0.326</td>
</tr>
<tr>
<td>No. of reflections measured</td>
<td>31760</td>
</tr>
<tr>
<td>No. of independent reflections</td>
<td>11050</td>
</tr>
<tr>
<td>R\text{int}</td>
<td>0.025</td>
</tr>
<tr>
<td>Final R\text{f} values [I>2\sigma(I)]</td>
<td>0.0396</td>
</tr>
<tr>
<td>Final wR(F2) values [I>2\sigma(I)]</td>
<td>0.1233</td>
</tr>
<tr>
<td>Final R\text{f} values (all data)</td>
<td>0.0551</td>
</tr>
<tr>
<td>Final wR(F2) values (all data)</td>
<td>0.1433</td>
</tr>
<tr>
<td>Goodness of fit on F2</td>
<td>1.046</td>
</tr>
<tr>
<td>CCDC number</td>
<td>CCDC 918215</td>
</tr>
</tbody>
</table>
Figure S4: Powder XRD pattern of the bulk complex $(C_{19}H_{42}N)_2[MoO(O_2)_{2}(C_2O_4)]\cdot H_2O$ compared with the simulated data.
Figure S5: ESI-MS of complex (C\textsubscript{19}H\textsubscript{42}N\textsubscript{2})\textsubscript{2}[MoO\textsubscript{2}(O\textsubscript{2})\textsubscript{2}(C\textsubscript{2}O\textsubscript{4})]\cdot H\textsubscript{2}O
Figure S6: Critical micellar concentration (CMC) of metallo-micelle obtained from a plot of specific conductance against concentration. (Standard Deviation = 0.23)
Figure S7: Dynamic light scattering (DLS) histogram of CTAB

Figure S8: Dynamic light scattering (DLS) histogram of complex 1

Figure S9: Particle size distribution histogram from TEM image
Figure S10: 1H-NMR spectrum of 2-(4-(methylthio)phenyl)-1,3-dioxane
Figure S11: 13C-NMR spectrum of 2-(4-(methylthio)phenyl)-1,3-dioxane
Figure S12: ESI-HRMS of 2-(4-(methylthio)phenyl)-1,3-dioxane
Figure S13: 1H-NMR spectrum of 2-(4-(methylsulfinyl)phenyl)-1,3-dioxane
Figure S14: 13C-NMR spectrum of 2-(4-(methylsulfinyl)phenyl)-1,3-dioxane
Figure S15: ESI-HRMS of 2-(4-(methylsulfinyl)phenyl)-1,3-dioxane
Figure S16: 1H-NMR spectrum of 2-(4-(methylsulfonyl)phenyl)-1,3-dioxane
Figure S17: 13C-NMR spectrum of 2-(4-(methylsulfonyl)phenyl)-1,3-dioxane
Figure S18: ESI-HRMS of 2-(4-(methylsulfonyl)phenyl)-1,3-dioxane
Figure S19: 1H-NMR spectrum of N-(4-(methylthio)benzylidene)aniline
Figure S20: 13C-NMR spectrum of N-(4-(methylthio)benzylidene)aniline
Figure S21: ESI-HRMS of N-(4-(methylthio)benzylidene)aniline
Figure S22: 1H-NMR spectrum of N-(4-(methylsulfinyl)benzylidene)aniline
Figure S23: 13C-NMR spectrum of N-(4-(methylsulfanyl)benzylidene)aniline
Figure S24: ESI-HRMS of N-(4-(methylsulfinyl)benzylidene)aniline
Determination of critical micelle concentration of \((C_{19}H_{42}N)_2[MoO(O_2)_{2}(C_2O_4)] \cdot H_2O\)

Electrical conductivity method was employed to determine the critical micelle concentration (CMC) of the complex \((C_{19}H_{42}N)_2[MoO(O_2)_{2}(C_2O_4)] \cdot H_2O\). The conductivity experiments were carried out in a double-jacket flask. The temperature of the flask was maintained at 25 °C by circulating water with Julabo FP50 Refrigerated - Heating Circulators. A SYSTRONICS digital bench top conductivity meter (Model 306) was used for the measurements. Solutions were prepared in deionised water which was first filtered with a Millipore Milli-Q system. A step-by-step dilution-extraction method was adopted for the measurements of specific conductance of the complex at various concentrations in order to avoid dilution error. The conductance was plotted as a function of molar concentration and the inflection point gives the value of CMC which is indicated in the figure S6.

Procedure for the recyclability of the catalyst

In a centrifuge tube, molybdenum complex (0.032g, 2.5 mol%) and thioanisole (0.186g, 1.5 mmol) in 2.5 ml of water were taken and stirred at room temperature. Then 40% (w/v) hydrogen peroxide (0.128ml, 1.5 mmol) was added slowly into the reaction mixture. Stirring was continued for 10 min. Reaction progress was monitored by TLC. After completion, ethyl acetate was added to it and the reaction mixture was centrifuged and decanted to separate molybdenum compound. The residual compound obtained was dried and used for second run. The aqueous phase is extracted with ethyl acetate 3-4 times. Then the combined organic extracts were dried over anhydrous sodium sulfate and the solvent was removed under reduced pressure. The crude product thus obtained was purified by column chromatography with Hexane: Ethyl acetate as an eluent.

For the second run: To the residual catalyst in the centrifuge tube, 2.5 ml of water and hydrogen peroxide (0.128ml, 1.5 mmol) was added. The mixture was stirred for 30 min to activate the catalyst. Then thioanisole (0.186g, 1.5 mmol) was added and stirring was continued for 45 min. Reaction progress was monitored by TLC. After completion, ethyl acetate was added to it and the reaction mixture was centrifuged and decanted to separate molybdenum compound. The residual compound was dried and used for the subsequent cycle.

After 4 run, 0.013g of catalyst was recovered. So in each run, on an average of 81 % catalysts can be recovered.