Supplementary Information

Direct Conversion of Chitin into a N-containing Furan Derivative

Xi Chen\(^a\), Shu Ling Chew\(^a\), Francesca M. Kerton\(^b\), and Ning Yan\(^a,\)*

\(^a\) Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117576, Singapore.

\(^b\) Department of Chemistry, Memorial University of Newfoundland, St. John’s, NL, A1B 3X7, Canada.

*Corresponding author. E-mail: ning.yan@nus.edu.sg

Content

Figure S1 3A5AF HPLC calibration curve

Figure S2 Solvent screening experiments

Figure S3 Optimization of reaction temperature

Figure S4 Optimization of solvent amounts

Figure S5 Screening and optimization of combined additives

Table S1 Elemental analysis of chitin, recovered chitin after reaction and chitin-humins

Figure S6 \(^1\)H NMR of 3A5AF after column chromatography separation

Figure S7 GPC analysis of chitin-humins fraction

Figure S8 GPC analysis of the raw filtrate after reaction

Figure S9 The influence of water on the reaction

Figure S10 Poison tests for NAG conversion to 3A5AF

Figure S11 \(^1\)H NMR (DMSO-\(d_6\)) of pure NAG and NAG-boric acid at different temperatures
Figure S1 Calibration curve of 3A5AF on HPLC (230 nm, $R^2 = 0.995$)

Figure S2 Solvent screening experiments on chitin to 3A5AF. Reaction conditions: 195°C, 1h, solvent (3 mL), chitin (100 mg). (A) 80 µL HCl (fumed); (B) 400 mol% boric acid; (C) 5 wt% in solvent LiCl, 400 mol% boric acid; (D) 80 µL HCl (fumed), 400 mol% boric acid.
Figure S3 Optimization of reaction temperature. Reaction conditions: 1 h, NMP (3 mL), chitin (100 mg), boric acid (400 mol%).

Figure S4 Optimization of solvent amounts. Reaction conditions: 195 °C, 1 h, chitin (100 mg), boric acid (400 mol%), LiCl (5 wt% in NMP).
Figure S5 Screening of combined additives (boric acid plus alkali/alkaline earth chlorides).
Reaction conditions: 215 °C, 1 h, chitin (100 mg), boric acid (400 mol%).

Table S1 Elemental analysis of chitin, recovered chitin after reaction and chitin-humins

<table>
<thead>
<tr>
<th>Entry</th>
<th>C wt%</th>
<th>H wt%</th>
<th>N wt%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chitin before reaction</td>
<td>47.24</td>
<td>6.40</td>
<td>6.89</td>
</tr>
<tr>
<td>Chitin after reaction</td>
<td>44.15</td>
<td>6.62</td>
<td>6.13</td>
</tr>
<tr>
<td>Chitin-humins</td>
<td>54.88</td>
<td>5.39</td>
<td>8.05</td>
</tr>
</tbody>
</table>

Reaction conditions: 215 °C, 1 h, NMP (3 mL), chitin (100 mg), boric acid (400 mol%), NaCl (200 mol%).
Figure S6 1H NMR of 3A5AF (400 MHz, D$_2$O) δ 8.06 (1H), 7.34 (1H), 2.43 (3H), 2.09 (3H)

Figure S7 GPC analysis of chitin-humins fraction after column separation. Reaction conditions: 215 °C, 1 h, NMP (3 mL), chitin (100 mg), boric acid (400 mol%), NaCl (200 mol%).
Figure S8 GPC analysis of the raw filtrate after reaction. Reaction conditions: 215 °C, 1 h, NMP (3 mL), chitin (100 mg), boric acid (400 mol%), NaCl (200 mol%).
Figure S9 The influence of water on the reaction. Reaction conditions: 215 °C, 1 h, NMP (3 mL), chitin (100 mg), boric acid (400 mol%), NaCl (200 mol%).

Figure S10 Poison tests for NAG conversion to 3A5AF. Reaction conditions: 215 °C, 1 h, NMP (3 mL), chitin (100 mg), boric acid (400 mol%), NaCl (200 mol%).
Figure S11 \(^1\)H NMR (DMSO-d\(_6\)) spectra of pure NAG and NAG-boric acid at different temperatures. Note: upon the addition of boric acid, two peaks disappear which are labeled with a red ellipse. The broadening of peaks is probably due to the interaction with boric acid.