Electronic Supplementary Information

Electrodeposited CZTS solar cells from the electrolyte of Reline

Hao Chen, Qinyan Ye, XuLin He, Jingjing Ding, Yongzheng Zhang, Junfeng Han, Jiang Liu *, Cheng Liao *, Jun Mei, WoonMing Lau
Chengdu Green Energy and Green Manufacturing Technology R&D Centre, Southwest Airport Economic Development Zone, Shuangliu, Chengdu, 610207, P. R. China

* Corresponding author: Tel: +86-28-67076209, Fax: +86-28-67070129
E-mail address: 546jiang@163.com (J. Liu); cliao315@hotmail.com (C. Liao).

Figure S1 X-ray diffraction patterns of the co-electroplated CuZnSn precursor film and the sulfurized CZTS film. For reference, the standard XRD patterns of kesterite CZTS (JCPDS 26-0575), metal Sn (JCPDS 04-0673) and Cu (JCPDS 04-0836) are
shown below. The sulfurized CZTS XRD pattern compared with JCPDS 26-0575 suggests a basic kesterite crystal structure with a preferred orientation of (112). The peaks for CuZnSn precursor film correspond to elemental Cu, Zn and Sn phases.

The $J-V$ characteristic of a single heterojunction solar cell can be described as1,2

$$J = - J_L + J_o \exp \left[\frac{q}{AKT} (V - RJ) \right] + GV$$

(1)

where G is the shunt conductance, R is the series resistance, A is the ideality factor, k is the Boltzmann constant, J_o is the saturation current density, q is the elementary charge, J_L is the light induced constant current density. From the equation (1), it can be deduced

$$\frac{dV}{dJ} = R + \frac{AkT}{q} (J + J_L)^{-1}$$

(2)

$$ln\left((J + J_L - GV) \right) = lnJ_o + \frac{q}{AKT}(V - RJ)$$

(3)

Assuming that $G=0$ and $J_L = J_{sc}$, the series resistance R and the ideality factor A can be obtained by plotting dV/dJ against $(J+J_{sc}-GV)^{-1}$ to find the slope and intercept, respectively. Similarly, the saturation current density J_o can be obtained from the semilogarithmic plot of $(V-RJ)$ against $ln(J+J_{sc}-GV)$.

Figure S2. (a) dV/dJ versus $(J+J_{sc}-GV)^{-1}$ with fit used to determine R and A according to the equation $dV/dJ = R + AkT (J+J_{sc}-GV)^{-1} /q$. (b) $(V-RJ)$ versus $ln(J+J_{sc}-GV)$ with fit used to determine to determine J_o according to the equation $ln(J+J_{sc}-GV) = lnJ_o + q (V-$
References
