Supporting Information

Harvest of Cu NPs anchored magnetic carbon materials from Fe/Cu preloaded biomass: Pyrolysis, characterization, and catalytic activity on aqueous reduction of 4-nitrophenol

Wu-Jun Liu, Ke Tian, Hong Jiang,* and Han-Qing Yu

†Department of Chemistry, University of Science and Technology of China, Hefei 230026, China

* Corresponding author:

Dr. Hong Jiang

Fax: 86-551-3607482; E-mail: jhong@ustc.edu.cn

The following is included as supporting information for this manuscript:

Table S1;

Figs. S1-S5.
The crystalline size of Cu NPs from the (111) diffraction peak was calculated by using the Scherrer equation:

\[d = \frac{k\lambda}{B\cos\theta} \]

where \(d \) (nm) is the crystalline size of Cu NPs, \(K \) is a dimensionless constant depending on the specific geometry of the scattering objects (\(K = 0.94 \) for Cu NPs), \(\lambda \) is the wavelength of the X-ray (\(\lambda = 0.154056 \) nm), \(\theta \) (rad) and \(B \) (rad) are the angles between the incident and diffracted beams and the full width at half-maximum, respectively. Based on the equation, the crystalline size of Cu NPs is 27.3 nm, larger than the average particle size calculated from the TEM images (21.2 nm).
<table>
<thead>
<tr>
<th>Items</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>BET Surface Area</td>
<td>185.7 m²/g</td>
</tr>
<tr>
<td>Micropore Area</td>
<td>137.0 m²/g</td>
</tr>
<tr>
<td>External Surface Area</td>
<td>48.6 m²/g</td>
</tr>
<tr>
<td>Total pore volume</td>
<td>0.097 cm³/g</td>
</tr>
<tr>
<td>micropore volume</td>
<td>0.063 cm³/g</td>
</tr>
<tr>
<td>average pore size</td>
<td>2.1 nm</td>
</tr>
</tbody>
</table>

Table S1. The surface area and pore texture of the as-synthesized material.
Fig. S1. Pore size distribution of the as-synthesized materials.
Fig. S2 EDX spectra of the Cu&Fe$_3$O$_4$-mC materials, the A and B is corresponding to the SEM image of Fig. 3a in the main text.
Fig. S3. The TEM images of the fresh, 1st, 3rd, and 5th time reused catalyst materials and their corresponding particle size distribution.
Fig. S4. XPS survey spectra of the Cu&Fe3O4-mC materials (after pyrolysis) and its precursor (before pyrolysis).
Fig. S5. (a) XPS survey spectra of the fresh and 5th reused catalyst; and (b) XPS Cu2p spectra of the fresh and 5th reused catalyst.