Increasing dyeability of polyester fabrics by photochemical treatment at room-temperature using H₂O₂ in air

- Supplementary Information -

Akihiko Ouchi,* Chuanxiang Liu, and Masao Kunioka
National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan

Contents
Page S2: **Fig. S1** Emission spectra of a germicidal lamp.

Fig. S2 UV absorption spectra of Cathilon Blue, Cathilon Red, and hydrazone formed by DNPH treatment.

References
Page S3: **Fig. S3** Micrograph of photochemically treated PET fabrics.
Page S4: **Fig. S4** Micrograph of photochemically treated cotton fabrics.
Fig. S1 Emission spectra of a germicidal lamp. S1

Fig. S2 UV absorption spectra of (a) Cathilon Blue, (b) Cathilon Red, and (c) hydrazone formed by DNPH treatment. Difference absorption spectra between original PET fabrics and photochemically modified PET fabrics dyed with cationic dyes or treated with DNPH.

Reference
Fig. S3 Micrograph of photochemically treated PET fabrics. (a) Original fabric and photochemically treated fabric using (b) H₂O (condition I), (c) 0.5 M H₂O₂ (condition II), (d) 0.5 M H₂O₂ + 0.5 M acrylic acid (condition III). Photochemical treatment: germicidal lamp (1.08 mW cm⁻²), 10 min, in air. Scale bars: 50 μm.
Fig. S4 Micrograph of photochemically treated cotton fabrics. (a) Original fabric and photochemically treated fabric using (b) H₂O (condition I), (c) 0.5 M H₂O₂ (condition II), (d) 0.5 M H₂O₂ + 0.5 M acrylic acid (condition III). Photochemical treatment: germicidal lamp (1.08 mW cm⁻²), 10 min, in air. Scale bars: 50 μm.