Conversion of Saccharides into Formic Acid using Hydrogen Peroxide and a Recyclable Palladium(II) Catalyst in Aqueous Alkaline Media at Ambient Temperatures

Supporting Information

Nima Zargari, Yejin Kim, and Kyung Woon Jung
DMSO Calibration Curve with Formic Acid.. S1
DMSO Calibration Curve with Glycolic Acid.. S2
Lewis Acid Additive Results.. S3
D-Glucose wet1D NMR Spectra (Table 2, entry 3).. S4
D-Glucose 13C NMR Spectra (Table 2, entry 3)... S5
D-Galactose wet1D NMR Spectra (Table 4, entry 1).. S6
D-Ribose wet1D NMR Spectra (Table 4, entry 2)... S7
D-Xylose wet1D NMR Spectra (Table 4, entry 3).. S8
D-Fructose wet1D NMR Spectra (Table 4, entry 4)... S9
D-Tagatose wet1D NMR Spectra (Table 4, entry 5)... S10
D-Maltose wet1D NMR Spectra (Table 4, entry 6)... S11
D-Lactose wet1D NMR Spectra (Table 4, entry 7)... S12
D-Cellobiose wet1D NMR Spectra (Table 4, entry 8).. S13
Sucrose wet1D NMR Spectra (Table 5, entry 1)... S14
D-Melezitose wet1D NMR Spectra (Table 5, entry 2).. S15
D-Raffinose wet1D NMR Spectra (Table 5, entry 3).. S16
Glycerol wet1D NMR Spectra (Table 5, entry 4)... S17
The calibration curve of a DMSO standard was taken with known amounts of formic acid. The 1H NMR of 20, 40, 80, and 120 μmol of formic acid was taken in 0.75 mL of D$_2$O with a sealed capillary DMSO standard.

The equation of the line is:

\[y = 10.315x \]

\[R^2 = 0.99372 \]
The calibration curve of a DMSO standard was taken with known amounts of glycolic acid. The \(^1\)H NMR of 1, 5, 10, and 20 µmol of glycolic acid was taken in 0.75 mL of D\(_2\)O with a sealed capillary DMSO standard.

\[y = 3.4771x \]
\[R^2 = 0.99756 \]
Lewis Acid Additive Results

<table>
<thead>
<tr>
<th>Lewis Acid</th>
<th>TON</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlCl$_3$</td>
<td>34.6</td>
</tr>
<tr>
<td>CrCl$_3$</td>
<td>79.9</td>
</tr>
<tr>
<td>ZnCl$_2$</td>
<td>64.9</td>
</tr>
<tr>
<td>SnCl$_2$</td>
<td>51.5</td>
</tr>
</tbody>
</table>

Reaction conditions: 100 μmol of substrate, 5 μmol of Lewis acid, and 600 μmol NaOH were dissolved in 0.44 mL H$_2$O. 60 μL 30% H$_2$O$_2$ was added and the mixture stirred at 25 °C for 16 hours. 0.25 mL of D$_2$O was then added to the reaction mixture with a sealed capillary DMSO standard. The solution was then analyzed using wet1D NMR.
(53.185 \times 10.315) = 109.7 \text{ TON}

Formic Acid

DMSO Standard

100 \mu\text{mol} \text{ D-Glucose (0.2 M aqueous solution) } \xrightarrow{600 \mu\text{mol} 30\% \text{ H}_2\text{O}_2, 600 \mu\text{mol} \text{ NaOH}} 5 \text{ mol} \% \text{ Pd(II) catalyst, 16 hrs., 25 \degree C} \xrightarrow{109.7 \text{ TON}}
Formic Acid

Carbonyl Carbon

100 μmol D-Glucose
600 μmol 30% H₂O₂
600 μmol NaOH
5 μmol Fe₃⁺/Pd(II) catalyst, 16 hrs., 25 °C

108.7 TON
$$\frac{(53.899 \times 10.315)}{5 \text{ mol } \% \text{ catalyst}} = 111.2 \text{ TON}$$

From Acid

DMSO Standard
Formic Acid

\[
\frac{(58.032 \times 10.315)}{5 \text{ mol } \% \text{ catalyst}} = 119.7 \text{ TON}
\]
Formic Acid

\[
\frac{(56.670 \times 10.315)}{5 \text{ mol} \% \text{ catalyst}} = 116.9 \text{ TON}
\]

100 μmol D-Xylose (0.2 M aqueous solution) 600 μmol 30% H₂O₂, 600 μmol NaOH
5 mol % Pd(II) catalyst, 16 hrs., 25 °C

116.9 TON
100 µmol D-Fructose (0.2 M aqueous solution)
600 µmol 30% H₂O₂, 600 µmol NaOH
5 mol % Pd(II) catalyst, 16 hrs., 25 °C

\[
\begin{align*}
\text{Formic Acid: } & \quad \frac{(40.266 \times 10.315)}{5 \text{ mol } \% \text{ catalyst}} = 83.1 \text{ TON} \\
\text{Glycolic Acid: } & \quad \frac{(20.851 \times 3.4771)}{5 \text{ mol } \% \text{ catalyst}} = 14.5 \text{ TON}
\end{align*}
\]
100 μmol D-Tagatose (0.2 M aqueous solution) 600 μmol 30% H₂O₂, 600 μmol NaOH
5 mol % Pd(II) catalyst, 16 hrs., 25 °C

Formic Acid

\[
\frac{(43.307 \times 10.315)}{5 \text{ mol % catalyst}} = 89.3 \text{ TON}
\]

Glycolic Acid

\[
\frac{(23.440 \times 3.4771)}{5 \text{ mol % catalyst}} = 16.3 \text{ TON}
\]

DMSO Standard
Formic Acid

\[
\frac{(41.667 \times 10.315)}{5 \text{ mol } \% \text{ catalyst}} = 86.0 \text{ TON}
\]
100 µmol D-Lactose (0.2 M aqueous solution) → 600 µmol 30% H₂O₂, 600 µmol NaOH, 5 mol % Pd(II) catalyst, 16 hrs., 60 °C → 98.7 TON

\[
\frac{(47.823 \times 10.315)}{5 \text{ mol } \% \text{ catalyst}} = 98.7 \text{ TON}
\]
\[
\frac{(47.228 \times 10^{3.15})}{5 \text{ mol } \% \text{ catalyst}} = 97.4 \text{ TON}
\]
Formic Acid

\[
\frac{(13.246 \times 10.315)}{5 \text{ mol} \% \text{ catalyst}} = 27.3 \text{ TON}
\]
Formic Acid

\[
\frac{(7.710 \times 10.315)}{5 \text{ mol } \% \text{ catalyst}} = 15.9 \text{ TON}
\]

DMSO Standard

100 \, \mu\text{mol D-Melezitose (0.2 M aqueous solution)} \quad 600 \, \mu\text{mol 30\% H}_2\text{O}_2, 600 \, \mu\text{mol NaOH} \\
5 \, \text{mol} \% \text{ Pd(II) catalyst, 16 hrs., 60 }^\circ\text{C}

15.9 \text{ TON}
Formic Acid

\[
\frac{(13.807 \times 10.315)}{5 \text{ mol} \% \text{ catalyst}} = 28.5 \text{ TON}
\]
Formic Acid

\[
\frac{(18.935 \times 10.315)}{5 \text{ mol } \% \text{ catalyst}} = 39.1 \text{ TON}
\]