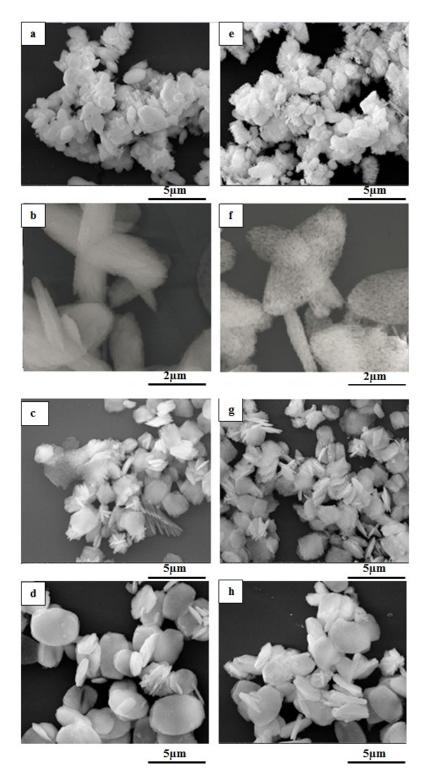
Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2015

Journal Name RSCPublishing

ARTICLE

Supporting Information


Potassium modified layered Ln₂O₂CO₃ (Ln: La, Nd, Sm, Eu) materials: Efficient and stable heterogeneous catalysts for biofuel production

Yashan Zhang^a, Lei Jin^a, Kevin Sterling^a, Zhu Luo^b, Ting Jiang^c, Ran Miao^a, Curtis Guild^a, and Steven L Suib*a,^b

^a Department of Chemistry. University of Connecticut, Storrs, Connecticut 06269. USA. Fax: +1 860 486 2981; Tel: +1 860 486 2797; E-mail: steven.suib@uconn.edu

^b Institute of Materials Science. University of Connecticut, Storrs, Connecticut 06269. USA.

^c Chemical & Biomolecular Engineering Department, University of Connecticut, Storrs, Connecticut 06269. USA.

Fig. S1. SEM images of Ln₂O(CO₃)₂ (before calcination), Ln: (a) La, (b): Nd, (c) Sm, and (d) Eu, and Ln₂O₂CO₃ (after calcination), Ln: (e) La, (f) Nd, (g) Sm, and (h) Eu.

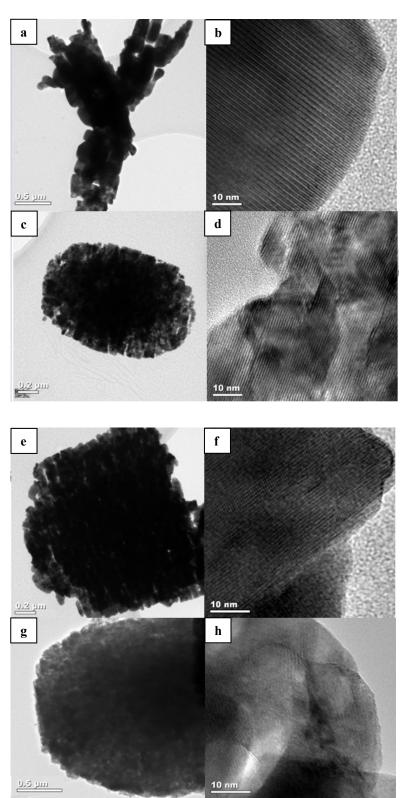
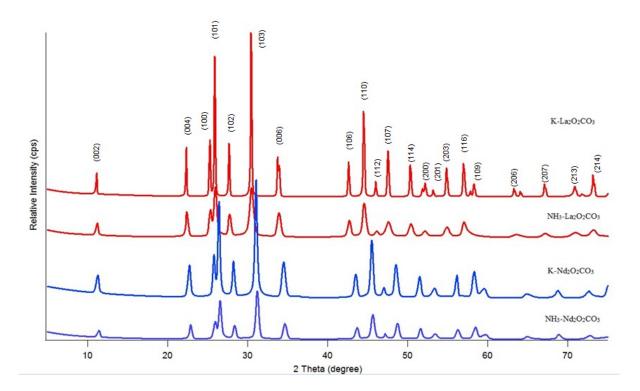
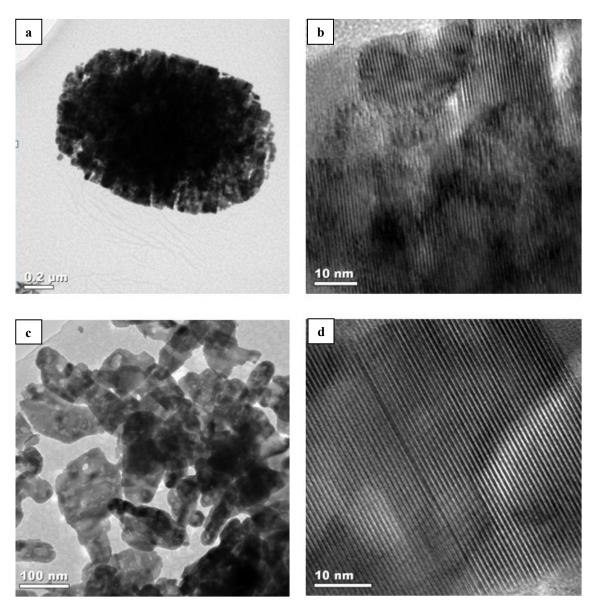




Fig. S2 TEM images of $Ln_2O_2CO_3$, Ln: (a) (b) La, (c) (d) Nd, (e) (f) Sm, and (g) (h) Eu.

Fig. S3 XRD patterns of synthesized layered $Ln_2O_2CO_3$ (Ln: La and Nd) materials by using NH₃ and $(NH_4)_2CO_3$ (labeled as NH₃-Ln₂O₂CO₃) and KOH and K₂CO₃ (labeled as K-Ln₂O₂CO₃) as basic starting materials.

Fig. S4 TEM pictures of (a), (b) potassium contained base synthesized $Nd_2O_2CO_3$ material and (c), (d) ammonium contained base synthesized $Nd_2O_2CO_3$ material.

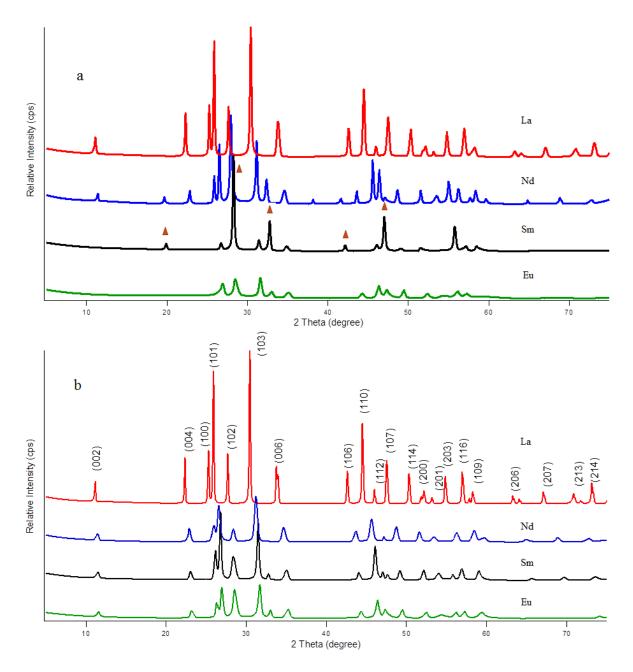
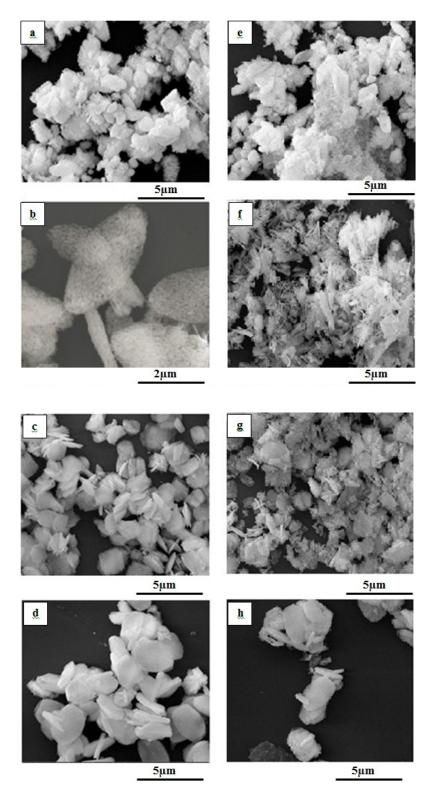



Fig. S5 XRD patterns of (a) synthesized $Ln_2O(CO_3)_2$ (Ln = La, Nd, Sm, Eu) solid materials after 4th cycle of biodiesel reactions, ale the peaks from Ln_2O_3 (b) synthesized layered rare earth oxycarbonate materials $Ln_2O_2CO_3$ (Ln = La, Nd, Sm, Eu) before reactions.

Fig. S6 SEM images of Ln₂O₂CO before reactions (a) La, (b): Nd, (c) Sm, and (d) Eu and after reactions, (e) La, (f) Nd, (g) Sm, and (h) Eu.

Yield % of FAME =
$$\frac{\text{FAME}}{\text{FAME} + \text{MG} + \text{DG} + \text{TG}} \times 100\%$$

Equation S1 The equation to calculate yield of FAME for biodiesel reactions. (FAME: fatty acid methyl esters; MG: monoglycerides; DG: diglycerides; TG: triglycerides.)

Table S1. BET surface area and basic strength tests by indicators and $TPD-CO_2$.

Sample	BET Surface Area (g/m²)	Basic Strength (H_)	Basic Sites Amount (< 200 °C mmol/g)
La ₂ O ₂ CO ₃	11	+9.3	0.15
Nd ₂ O ₂ CO ₃	19	+9.3	0.33
Sm ₂ O ₂ CO ₃	15	+9.3	0.15
Eu ₂ O ₂ CO ₃	13	+9.3	0.21

Table S2. Biodiesel yields of potassium and ammonium based Ln₂O₂CO₃ materials.

Sample	Starting Base Mixture	FAME Yield
$La_2O_2CO_3$	KOH and K ₂ CO ₃	78 %
2202003	NH ₃ and (NH ₄) ₂ CO ₃	24 %
Nd ₂ O ₂ CO ₃	KOH and K ₂ CO ₃	99 %
114202003	NH ₃ and (NH ₄) ₂ CO ₃	25 %

Table S3. The potassium amount in fresh and recycled $Ln_2O_2CO_3$ materials.

Sample	K ⁺ Amount in Ln ₂ O ₂ CO ₃ Materials (wt. %)	K ⁺ Amount in Recycled Ln ₂ O ₂ CO ₃ Materials (wt. %)	K ⁺ Amount in Ln ₂ O ₂ CO ₃ Materials (Mole. %)
La ₂ O ₂ CO ₃	1.35	0.77	11.5
Nd ₂ O ₂ CO ₃	1.45	1.12	12.5
Sm ₂ O ₂ CO ₃	1.10	0.47	10.0
Eu ₂ O ₂ CO ₃	1.03	0.42	9.5

Table S4. The potassium and rare earth metal amount in biodiesel.

Sample	K ⁺ Amount in Biodiesel Product (ppm)	Ln ³⁺ Amount in Biodiesel Product (ppm)
La ₂ O ₂ CO ₃	1.4	ND
Nd ₂ O ₂ CO ₃	ND	ND
Sm ₂ O ₂ CO ₃	2.5	ND
Eu ₂ O ₂ CO ₃	4.5	ND

ND: Not Detected