Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2015 Journal Name RSCPublishing ARTICLE ## **Supporting Information** ## Potassium modified layered Ln₂O₂CO₃ (Ln: La, Nd, Sm, Eu) materials: Efficient and stable heterogeneous catalysts for biofuel production Yashan Zhang^a, Lei Jin^a, Kevin Sterling^a, Zhu Luo^b, Ting Jiang^c, Ran Miao^a, Curtis Guild^a, and Steven L Suib*a,^b ^a Department of Chemistry. University of Connecticut, Storrs, Connecticut 06269. USA. Fax: +1 860 486 2981; Tel: +1 860 486 2797; E-mail: steven.suib@uconn.edu ^b Institute of Materials Science. University of Connecticut, Storrs, Connecticut 06269. USA. ^c Chemical & Biomolecular Engineering Department, University of Connecticut, Storrs, Connecticut 06269. USA. **Fig. S1**. SEM images of Ln₂O(CO₃)₂ (before calcination), Ln: (a) La, (b): Nd, (c) Sm, and (d) Eu, and Ln₂O₂CO₃ (after calcination), Ln: (e) La, (f) Nd, (g) Sm, and (h) Eu. Fig. S2 TEM images of $Ln_2O_2CO_3$, Ln: (a) (b) La, (c) (d) Nd, (e) (f) Sm, and (g) (h) Eu. **Fig. S3** XRD patterns of synthesized layered $Ln_2O_2CO_3$ (Ln: La and Nd) materials by using NH₃ and $(NH_4)_2CO_3$ (labeled as NH₃-Ln₂O₂CO₃) and KOH and K₂CO₃ (labeled as K-Ln₂O₂CO₃) as basic starting materials. **Fig. S4** TEM pictures of (a), (b) potassium contained base synthesized $Nd_2O_2CO_3$ material and (c), (d) ammonium contained base synthesized $Nd_2O_2CO_3$ material. Fig. S5 XRD patterns of (a) synthesized $Ln_2O(CO_3)_2$ (Ln = La, Nd, Sm, Eu) solid materials after 4th cycle of biodiesel reactions, ale the peaks from Ln_2O_3 (b) synthesized layered rare earth oxycarbonate materials $Ln_2O_2CO_3$ (Ln = La, Nd, Sm, Eu) before reactions. **Fig. S6** SEM images of Ln₂O₂CO before reactions (a) La, (b): Nd, (c) Sm, and (d) Eu and after reactions, (e) La, (f) Nd, (g) Sm, and (h) Eu. Yield % of FAME = $$\frac{\text{FAME}}{\text{FAME} + \text{MG} + \text{DG} + \text{TG}} \times 100\%$$ **Equation S1** The equation to calculate yield of FAME for biodiesel reactions. (FAME: fatty acid methyl esters; MG: monoglycerides; DG: diglycerides; TG: triglycerides.) Table S1. BET surface area and basic strength tests by indicators and $TPD-CO_2$. | Sample | BET Surface Area
(g/m²) | Basic Strength (H_) | Basic Sites Amount
(< 200 °C mmol/g) | |--|----------------------------|---------------------|---| | La ₂ O ₂ CO ₃ | 11 | +9.3 | 0.15 | | Nd ₂ O ₂ CO ₃ | 19 | +9.3 | 0.33 | | Sm ₂ O ₂ CO ₃ | 15 | +9.3 | 0.15 | | Eu ₂ O ₂ CO ₃ | 13 | +9.3 | 0.21 | Table S2. Biodiesel yields of potassium and ammonium based Ln₂O₂CO₃ materials. | Sample | Starting Base Mixture | FAME Yield | |--|---|------------| | $La_2O_2CO_3$ | KOH and K ₂ CO ₃ | 78 % | | 2202003 | NH ₃ and (NH ₄) ₂ CO ₃ | 24 % | | Nd ₂ O ₂ CO ₃ | KOH and K ₂ CO ₃ | 99 % | | 114202003 | NH ₃ and (NH ₄) ₂ CO ₃ | 25 % | **Table S3.** The potassium amount in fresh and recycled $Ln_2O_2CO_3$ materials. | Sample | K ⁺ Amount in
Ln ₂ O ₂ CO ₃
Materials (wt. %) | K ⁺ Amount in
Recycled
Ln ₂ O ₂ CO ₃
Materials (wt. %) | K ⁺ Amount in
Ln ₂ O ₂ CO ₃
Materials
(Mole. %) | |--|---|---|--| | La ₂ O ₂ CO ₃ | 1.35 | 0.77 | 11.5 | | Nd ₂ O ₂ CO ₃ | 1.45 | 1.12 | 12.5 | | Sm ₂ O ₂ CO ₃ | 1.10 | 0.47 | 10.0 | | Eu ₂ O ₂ CO ₃ | 1.03 | 0.42 | 9.5 | **Table S4.** The potassium and rare earth metal amount in biodiesel. | Sample | K ⁺ Amount in
Biodiesel Product
(ppm) | Ln ³⁺ Amount in
Biodiesel Product
(ppm) | |--|--|--| | La ₂ O ₂ CO ₃ | 1.4 | ND | | Nd ₂ O ₂ CO ₃ | ND | ND | | Sm ₂ O ₂ CO ₃ | 2.5 | ND | | Eu ₂ O ₂ CO ₃ | 4.5 | ND | ND: Not Detected