Magnetic Nano-adsorbent integrated with Flow-injection System for Trace Analysis of Multiple Heavy Metals

Pei-Ling Lee,* Yuh-Chang Sun* and Yong-Chien Ling**

Department of Biomedical Engineering and Environmental Sciences,* Department of Chemistry**, National Tsing Hua University, Hsinchu 30013, Taiwan

Electronic Supplementary Information

Power X-ray Diffraction Measurement

Fig. S-1 shows the powder X-ray diffraction (PXRD) patterns of the pristine MNPs and MNPs-PAA, respectively. The PXRD characteristic peaks (2θ = 30.26, 35.45, 43.3, 53.5, 57.12, 62.65°) for iron oxide (Fe₃O₄ or γ-Fe₂O₃), which were marked with respective indices (220), (311), (400), (422), (511), (440), appeared in both samples. The average crystallite size revealed from peak broadening was about 8 nm (and 4 nm) for pristine MNPs (and MNPs-PAA) according to Scherrer equation.¹

\[D = \frac{0.9 \lambda}{\beta \cos \theta} \]

where D is the average crystallite size (nm), λ is the wavelength of X-rays (CuKα : λ = 0.1540 nm), θ is the Bragg diffraction angle, and β is the full width at half maximum (FWHM in radians).

Fig. S-1 The powder X-ray diffraction (PXRD) patterns of (a) pristine MNPs, and (b) MNPs-PAA. The peaks are indexed to JCPDS card No. 19-0629.
1. The number of MNPs-PAA in one cm3 is 8×10^8 particles (5-nm particle size; non-porous material). The surface area of one MNPs-PAA is 78.5 nm2. The total surface area per unit volume is 6.3×10^{20} nm2 cm$^{-3}$.

2. The number of Amberlite XAD-4 in one cm3 is 4096 particles (640-μm particle size; porous material 10-nm pore size; assuming 100 % porosity). The surface area of one XAD-4 is 5.14×10^{12} nm2, which is based on $\sim1.63\times10^{10}$ pores present in one XAD-4 (surface area of one 10-nm pore is 314 nm2). The total surface area per unit volume is 2.1×10^{16} nm2 cm$^{-3}$.

3. The number of C$_{18}$ in one cm3 is 9×10^9 particles (4.81-μm particle size; porous material 8-nm pore size; assuming 100 % porosity). The surface area of one C$_{18}$ is 2.89×10^8 nm2, which is based on $\sim1.44\times10^6$ pores present in one C$_{18}$ (surface area of one 8-nm pore is 200.96 nm2). The total surface area per unit volume is 2.6×10^{18} nm2 cm$^{-3}$.

Table S-1. Comparison of specific surface area and relevant properties in different adsorbents

<table>
<thead>
<tr>
<th>Adsorbent</th>
<th>Particle size (nm)</th>
<th>Specific surface area (m2 g$^{-1}$)</th>
<th>Pore size (nm)</th>
<th>Total surface area per unit volume (nm2 cm$^{-3}$)a</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNPs-PAA</td>
<td>5-10</td>
<td>120</td>
<td>2.7</td>
<td>6.3×10^{20}</td>
</tr>
<tr>
<td>Amberlite XAD-4b</td>
<td>6.4×10^5</td>
<td>831</td>
<td>6-20</td>
<td>2.1×10^{16}</td>
</tr>
<tr>
<td>C$_{18}$c</td>
<td>4.8×10^3</td>
<td>187</td>
<td>8</td>
<td>2.6×10^{18}</td>
</tr>
</tbody>
</table>

aCalculations were based on non-porous MNPs-PAA and 100 % porosity in XAD-4 and C$_{18}$.

bThe specific surface area and pore size data were from reference2 and manufacturing company.

cThe particle size, specific surface area, and pore size data were from reference3.
Comparing the FT-IR spectra of pristine MNPs, MNPs-PAA, and PAA shown in Fig. S-2, characteristic absorption band at 630 cm$^{-1}$ ascribed to Fe-O bond was expectedly present in both pristine MNPs and MNPs-PAA spectra. Similarly, characteristic bands at 3200 and 3400 cm$^{-1}$ ascribed to N-H stretching vibrations of amine and amide were present in pristine MNPs and MNPs-PAA spectra. The absorption bands at 1500 and 1640 cm$^{-1}$ characteristic of N-H bending vibration were present in the pristine MNPs spectrum only. Weak absorption bands at 1405, 1540, and 1710 cm$^{-1}$ were present in the MNPs-PAA spectrum. The 1710 cm$^{-1}$ band in PAA and MNPs-PAA spectra was ascribed to C=O from the carboxylic groups in PAA. On contrast, absorption bands at 1405 and 1540 cm$^{-1}$ present in MNPs-PAA spectrum only were presumably the outcome of acid-base binding between the PAA and the MNPs to form carboxylate groups. Previous study ascribed 1405 and 1540 cm$^{-1}$ bands to COO$^-$ anti-symmetric and COO$^-$ symmetric vibrations, respectively.4,5 Thus, the bidentate bonding of the carbonyl groups to the most outer Fe atoms of MNPs could be demonstrated. Other characteristic absorption bands of PAA such as 1150-1280 cm$^{-1}$ (aliphatic acid), 1400-1450 cm$^{-1}$ (C-O stretch, deformation vibration of OH)1
TGA Measurements

Fig. S-3 shows the TGA curves of pristine MNPs, MNPs-PAA and PAA. For pristine MNPs, there are not significant weight lose. The PAA oligomer and MNPs-PAA simultaneously show the significant weight loses at two stages on contrast. The first stage of degradation is below 250 °C contributing to the decompositions of free carboxyl groups and dehydration. The second stage of degradation is 250 °C-800 °C attributing to the decompositions of polymer backbone. The weight lose of MNPs-PAA due to dehydration is 2 % and 18 % for degradation of free carboxyl groups and polymer backbone. From the results of TGA analysis, 0.22 g PAA existing on 1 g MNPs would be presumed.

The estimated number of –COOH per unit area was 9.02 x 10^{11} molecules cm^{-2}, which was based on average particles size of 5 nm and 28 AA molecules per one PAA molecule.

References