SUPPLEMENTAL INFORMATION
for

In Vitro Biotransformation of Dimethylarsinic Acid and Trimethylarsine Oxide by Anaerobic Microflora of Mouse Cecum Analyzed by HPLC-ICP-MS and HPLC-ESI-MS

Kevin M. Kubachka,a Michael C. Kohan,c Sean D. Conklin,b Karen Herbin-Davis,d John T. Creed,a and David J. Thomasd

aUS EPA, ORD, NERL, Microbiological and Chemical Exposure Assessment Research Division, Cincinnati, OH 45268, USA.
E-mail: creed.jack@epa.gov; Fax: +1-513-569-7757;
Tel: +1-513-569-7617
bOak Ridge Postdoctoral Research Fellow
cUS EPA, ORD, NHEERL, Environmental Carcinogenesis Division, Research Triangle Park, NC 27711, USA
dUS EPA, ORD, NHEERL, Experimental Toxicology Division, Research Triangle Park, NC 27711, USA

Four supplemental figures are included in this document with their respective captions:

Figure SI-1
Figure SI-2
Figure SI-3
Figure SI-4
Figure SI-1: Example HPLC-ICP-MS chromatograms (m/z 75) for various mixtures of arsenic standard. A) HPLC-ICP-MS using **Separation 1** for the separation of TMAS standard (upper trace) with TMAO as an impurity and DMDTA standard (lower trace) with DMTAV and DMAV as impurities. * denotes elution time of AsIII, AsV, and MMAV elute. B) HPLC-ICP-MS using **Separation 2** for the separation of AsIII, DMAV, MMAV, DMTAV, AsV. C) HPLC-ICP-MS using **Separation 3** for the separation of a standard mixture of DMDTA, DMTAV, and TMAS. ** denotes elution time of AsIII, MMAV, DMAV, and AsV. The conditions for each separation are listed in **Table 1**.
Intestinal ceca of B6C3F1 male mice were removed under sterile anaerobic conditions. Mixed with VPI buffer (0.1g CaCl$_2$, 0.2g MgSO$_4$, 0.5g KH$_2$PO$_4$, 5.0g NaHCO$_3$ and 1.0g NaCl l$^{-1}$) at 0.03g cecal contents per mL of buffer. Fortified with DMA and incubated in anaerobic chamber according to the Supplementation Table. Flash frozen using liquid N$_2$, stored at -72 °C until analysis.

Thawed and vortexed, then centrifuged at 10400 x g for 10 min. Diluted appropriately with 20mM (NH$_4$)$_2$CO$_3$ at pH – 9.0 to minimize conversion of oxide to sulfide while awaiting analysis.

Supplementation Table

<table>
<thead>
<tr>
<th>Supplementation level (ng As g$^{-1}$)</th>
<th>Incubation Time (Hours at 37 °C)</th>
<th>DMAV Supplementation</th>
<th>TMAO Supplementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>I 0</td>
<td>0</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>II 20</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>III 200</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>IV 1000</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Controls (no cecum, VPI buffer) at t = 0 and 24 only. All controls supplemented at all four levels (n = 3).

Figure SI-2: Summary of the experimental design including: cecal content preparation, supplementation levels (DMAV and TMAO), anaerobic incubation period, and sample preparation prior to analysis.

Privileged Document for Review Purposes Only
Figure S1-3: Time dependent metabolism of DMA$^\text{V}$ (A) 20 ng As g$^{-1}$, B) 1000 ng As g$^{-1}$ (B1, major metabolites, B2, minor metabolites) in incubated reaction mixtures containing the anaerobic microflora from a mouse cecum. Data obtained by HPLC-ICP-MS analysis using Separation 1. Error bars represent 1σ in the positive direction. Time dependence for concentrations of sum of all arsenic species (---), DMA$^\text{V}$ (--), DMTA$^\text{V}$ (--), and DMDTA (--), iAs (--$>$95% As$^\text{V}$) and TMAS (--).
Figure SI-4: Time dependent metabolism of TMAO (A) 17 ng As g⁻¹, B) 830 ng As g⁻¹) in incubated reaction mixtures containing the anaerobic microflora from a mouse cecum. Data obtained by HPLC-ICP-MS analysis using Separation 1. Error bars represent 1σ in the positive direction.
Time dependence for concentrations of sum of all arsenic species (---■---), TMAS (---●---), TMAO (---○---), and iAs (---▲---) (>95% AsV).