Electronic supplementary information

Direct chemical vapour generation-flame atomization as interface of high performance liquid chromatography-atomic fluorescence spectrometry for speciation of mercury without using post-column digestion

Yong-guang Yina, Zhen-hua Wanga, Jin-feng Pengb, Jing-fu Liua*, Bin Hea, Gui-bin Jianga

a State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China

b Food Safety Testing Subsection, Inspection and Quarantine Technology Center, Ningbo Entry-Exit Inspection and Quarantine Bureau, Ningbo 315012, China

Figures

\textbf{Fig. S1} Effect of HCl concentration on intensities of mercury compounds. Concentration of mercury species: 50 μg L$^{-1}$. Flow rate of KBH$_4$: 1 mL min$^{-1}$. Flow rate of carrier gas: 600 mL min$^{-1}$. Other conditions were given in Table 1.
Fig. S2 Effect of concentration of KBH$_4$ on the intensities of mercury compounds. Concentration of mercury species: 50 μg L$^{-1}$. Flow rate of KBH$_4$: 1 mL min$^{-1}$. Flow rate of carrier gas: 600 mL min$^{-1}$. Other conditions were given in Table 1.
Fig. S3 Effect of flow rate of KBH$_4$ on the intensities of mercury compounds. Concentration of mercury species: 50 μg L$^{-1}$. Flow rate of carrier gas: 600 mL min$^{-1}$. Other conditions were given in Table 1.
Fig. S4 Effect of flow rate of carrier gas on the intensities of mercury compounds. Concentration of mercury species: 50 μg L⁻¹. Other conditions were given in Table 1.