Supporting Information

Sequential monitoring of elemental mercury in stack gas by dielectric barrier discharge micro-plasma emission spectrometry

Zhongchen Wua,b, Mingli Chena*, Lin Taob, Duo Zhaob and Jianhua Wanga*

a. Research Center for Analytical Sciences, College of Sciences, Northeastern University, Shenyang, 110819, China

b. School of Space Science and Physics, Shandong University at Weihai, Weihai, 264209, China
Fig. S1. Upper: the gold amalgam; Bottom: the gold amalgam trapping micro-column.
Fig. S2. The variation of normalized emission intensity at 253.7 nm with the discharging voltage. Flow rate: 0.6 L min$^{-1}$, discharge frequency: 43 KHz, Hg0 vapor concentration: 0.30 ppb.
Fig. S3. The dependence of the normalized Hg0 emission intensity at 253.7 nm on the flow rate of the carrier gas. The discharging voltage: 100 V; discharge frequency: 43 KHz, the concentration of Hg0 in the standard vapor: 0.30 ppb.