A Ratiometric Fluorescent Chemosensor for Fluoride Ions
based on Proton Transfer Signaling Mechanism

Bin Liu and He Tian

Lab of Advanced Materials and Institute of Fine chemicals, East China University of
Science & Technology, Shanghai, 200237 P. R. China

E-mail:tianhe@ecust.edu.cn; Fax:+86-21-64252288; Tel: +86-21-64252756

Supplementary Information

Figure S1. Fluorescence titration spectra of 4-benzoamide-N-butyl-naphthalimide 1 (10^{-5} mol/L) with TBAF in CH$_3$CN. Excitation wavelength: 490 nm.
Figure S2. Fluorescence titration spectra of 4-benzoamide-N-butyl-naphthalimide 1 (10^{-5} \text{ mol/L}) with TBAF in CH$_3$CN. Excitation wavelength: 400 nm, another isosbestic wavelength.

Figure S3. Fluorescence titration spectra of 4-benzoamide-N-butyl-naphthalimide 1 (10^{-5} \text{ mol/L}) with TBAF in CH$_3$CN. Excitation wavelength: 410 nm.
Figure S4. Dependence of the emission spectra of 4-benzoamide-N-butyl-naphthalimide (1.53×10⁻⁵M, acetonitrile: water=1:1[v/v], 298K) on pH (λ_{ex}=385 nm). The pH was controlled using minimum volumes of sodium hydroxide and hydrochloric acid solutions.

Figure S5. Absorption titration spectra of 4-benzoamide-N-butyl-naphthalimide (10⁻⁵ mol/L) with Cl⁻ in CH₃CN at 20°C.
Figure S6. Absorption titration spectra of 4-benzoamide-N-butyl-naphthalimide (10⁻⁵ mol/L) with Br⁻ in CH₃CN at 20°C.

Figure S7. Absorption titration spectra of 4-benzoamide-N-butyl-naphthalimide (10⁻⁵ mol/L) with I⁻ in CH₃CN at 20°C.
Figure S8. Colour changes observed with the addition of TBAF to an acetonitrile solution of 1. From left to right: 1; 1+F(2equiv.); 1+F(4equiv.); 1+F(8equiv.); 1+F(10equiv.).

Figure S9. Fluorescent emission colour changes observed with the addition of TBAF to an acetonitrile solution of 1 under UV lamp. From left to right: 1; 1+F(2equiv.); 1+F(4equiv.); 1+F(8equiv.); 1+F(10equiv.).
Figure S10. Fluorescence excitation spectra of 4-benzoamide-N-butyl-naphthalimide (10^{-5} mol/L) with 10equiv. F$^-$ in CH$_3$CN at 20°C ($\lambda_{em}=583$ nm).