Synthesis of Periodic Mesoporous Organosilicas with Incorporated Aluminium

Benjamin J. Hughes, Jean-Baptiste Guilbaud, Mathieu Allix and Yaroslav Z. Khimyak*

* Molecular Materials Centre, Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, United Kingdom. Fax: 0151 794 3587; Tel: 0151 794 3535; E-mail: khimyak@liv.ac.uk

Electronic Supplementary Information

Figure S1. Powder X-ray diffraction patterns of as-synthesised Al-CH$_2$-CH$_2$-PMO with different Si/Al ratios.

Figure S2. 27Al MAS NMR spectra of Al-CH$_2$-CH$_2$-PMOs (as-synthesised) with different Si/Al ratios.

Figure S3. 1H-29Si MAS NMR spectra of as-synthesised Al-CH$_2$-CH$_2$-PMOs with different Si/Al ratios.

Identification of acidic sites by FTIR spectroscopy of adsorbed pyridine.
Figure S1. Powder X-ray diffraction patterns of as-synthesised Al-CH$_2$-CH$_2$-PMO with different Si/Al ratios.
Figure S2. ^{27}Al MAS NMR spectra of Al-CH$_2$-CH$_2$-PMOs (as-synthesised) with different Si/Al ratios.
Figure S3. 1H-29Si MAS NMR spectra of as-synthesised Al-CH$_2$-CH$_2$-PMOs with different Si/Al ratios.
Identification of acidic sites by FTIR spectroscopy of adsorbed pyridine

The adsorption of pyridine was carried on the Al-CH$_2$-CH$_2$-PMO with different contents of Al. The solids were thermally treated at 150°C for 24 hours before the adsorption of pyridine. The solids were pressed with KBr into the pellets (KBr was calcined at 550°C for 24 hours before use). The spectra were recorded on a PerkinElmer FTIR spectrometer.

The spectra of pyridine adsorbed on a Al-CH$_2$-CH$_2$-PMOs show the presence of several bands. The lines at 1540 (m.) and 1640 (m.) cm$^{-1}$ registered for the samples with different Al-contents are indicative of pyridine bound to Bronsted acidic sites, while the line at \(\text{ca. 1490 (s.) cm}^{-1} \) can be ascribed to the pyridine bound to both Bronsted and Lewis acidic sites. The intense peak at 1444 (s.) cm$^{-1}$ is attributable to the H-bonded pyridine typical of the silica based molecular sieves.