Electronic Supplementary Information

A Mild and Efficient Si (111) Surface Modification via Hydrosilylations of Activated Alkynes

Yang Liu,a,c Shoko Yamazaki,a,c,* Shinichi Yamabea and Yoshihiro Nakatob,c

aDepartment of Chemistry, Nara University of Education, Takabatake-cho, Nara 630-8528, Japan

bDivision of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan

cThe Core Research for Evolutional Science and Technology, The Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan

E-mail: yamazaks@nara-edu.ac.jp

Contents

[1] XPS spectra (Figures S1-4)

[2] The STO-3G*-optimized structures of Si_{62}H_{56} and •Si_{62}H_{55} (Figures S5-6)
Figure S1. XPS spectra of functionalized Si(111) surface 4f.

Figure S2. XPS spectra of functionalized Si(111) surface 4k.
Figure S3. XPS spectra of functionalized Si(111) surface 4m.

Figure S4. XPS spectra of functionalized Si(111) surface 4n.
Figure S5. RHF/STO-3G*-optimized geometry of Si_{62}H_{56}. Blue patterned atoms are silicon atoms and white atoms are hydrogen. An arrow shows the removed hydrogen.

Figure S6. UHF/STO-3G*-optimized geometry of Si_{62}H_{55} radical. An arrow shows silicon radical.