SUPLEMENTARY MATERIAL

Stéphanie Chopin, a Jack Cousseau,*a Eric Levillain,* Concepció Rovira,*b Jaume Veciana,*

b Atula S. D. Sandanayaka, c Yasuyuki Araki, c and Osamu Ito c

a Laboratoire CIMMA, UMR CNRS 6200, University of Angers, 2 Bd Lavoisier, 49045 Angers Cedex, France. E-mail: jack.cousseau@univ-angers.fr

b Institut de Ciencia de Materials de Barcelona, C.S.I.C., Campus de la UAB. 08193 Bellaterra, Spain; E-mail: vecianaj@icmab.es, cun@icmab.es

c Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577 Japan; ito@tagen.tohoku.ac.jp

*Author for correspondence. E-mail: cun@icmab.es

E-mail: ito@tagen.tohoku.ac.jp
Figure SI-1. Cyclic voltammogram vs Fe³⁺/Fe of 5 (2.5×10⁻⁴ M) in 0.1 M TBAHP/o-DCB:CH₃CN (95:5); B and C, reduction peaks of the C₆₀ moiety.

Figure SI-2. Cyclic voltammogram vs Fe⁺/Fe of 1 (2.5×10⁻⁴ M) in 0.1 M TBAHP/o-DCB:CH₃CN (95:5); A, oxidation potential of PMT anion, B and C, reduction peaks of the C₆₀ moiety.
Figure SI-3. Optimized structures of $C_{60}-(PTM^+)_2$ 1; C = gray, Cl = green, O = red, and blue = H.
Figure SI-4. Time-resolved fluorescence spectra of (PTM−) in o-DCB.

Figure SI-5. Time-resolved fluorescence spectra of C_{60}-(PTMH)$_2$ in toluene.

Figure SI-6. Time-resolved fluorescence spectra of C$_{60}$-(PTM)$^-$$_2$.
Figure SI-7. Absorption-time profiles of the transient species of C$_{60}$(PTM)$_2^-$ at 1020 nm in o-DCB and PhCN.

Figure SI-8. Nanosecond transient absorption spectra of 0.10 mM C$_{60}$(PTM)$_2^-$ observed by 355 nm laser irradiation in at 100 ns (●) and 1000 ns (○) in PhCN.