Core-shell structure of chemically synthesized FePt nanoparticles: a comparative study

Michaël Delalande, Pierre R. Marcoux, Peter Reiss and Yves Samson

Fig. S1 Fe0 PtII dioctylether method: (a) X-Ray diffraction patterns recorded on as-made and annealed nanoparticles; (b) TEM micrograph of as-made nanoparticles; (c) diameter distribution of as-made nanoparticles.
Fig. S2 Fe°Pd° dibenzylether method: (a) X-Ray diffraction patterns recorded on as-made and annealed nanoparticles; (b) TEM micrograph of as-made nanoparticles; (c) diameter distribution of as-made nanoparticles.
Fig. S3 FeIIPtII diphenylether method: (a) X-Ray diffraction patterns recorded on as-made and annealed nanoparticles; the black spot indicates that these both peaks from FePt alloy superimpose on (400) diffraction pattern of silicon substrate; the star indicates (311) diffraction pattern due to iron oxide (either Fe$_3$O$_4$ or γ-Fe$_2$O$_3$); (b) TEM micrograph of as-made nanoparticles; (c) diameter distribution of as-made nanoparticles.
Fig. S4 FeIIPtII dioctylether method: X-Ray diffraction patterns recorded on as-made and annealed particles.
Fig. S5 FeII PtII TEG method: (a) X-Ray diffraction patterns recorded on as-made and annealed nanoparticles; black spots indicate peaks coming from (311) diffraction pattern of silicon substrate; (b) TEM micrograph of as-made nanoparticles.