Supplementary Information (i):

The t-plots for the samples studied. The estimated % microporosity is very small 1-3%
Supplementary Information (ii)

The I-plots for a typical mesoporous solid (MCM-41) and a microporous solid (zeolite Y). In the first case the Inversion point is quite sharp. In the second case is quite smooth.

![Graph showing I-plots for MCM-41 and zeolite Y](image)
Supplementary Material (ESI) for *Journal of Materials Chemistry*
This journal is © The Royal Society of Chemistry 2006

Supplementary Information (iii)

The estimation of pore anisotropy b can be done along the next steps [52, 46] based on nitrogen adsorption measurements.

Step i: The anisotropy b_i for each group i of pores may be defined as

$$b_i = \frac{L_i}{D_i} = \frac{L_i}{2r_i}$$ \hspace{1cm} (A1)

where L_i, D_i and r_i are the length, the diameter and the radius of the group i of pores filled at a relative pressure $P_i (=P_i/P_0)$. Then the following relationship applies

$$L_i = D_i b_i = 2r_i b_i = r_i^{a_i}$$ \hspace{1cm} (A2)

where a_i is a very important scaling parameter to be determined.

Step ii: At each particular pressure $P_i (=P_i/P_0)$ the differential specific surface area S_i as well as the differential specific pore volume V_i are estimated from nitrogen adsorption measurements via a standard algorithm, for example the BJH methodology [29].

Step iii: Then the dimensionless parameter S_i^3/V_i^2 may be calculated, which for cylindrical pores takes the form

$$\frac{S_i^3}{V_i^2} = \left[\frac{N_i(2\pi r_i)L_i}{N_i(\pi r_i^2)L_i} \right]^3 = \left[\frac{N_i(2\pi r_i)(2r_i b_i)}{N_i(\pi r_i^2)(2r_i b_i)} \right]^3 = 16\pi b_i N_i =$$

$$= \left[\frac{N_i(2\pi r_i)(r_i^{a_i})}{N_i(\pi r_i^2)(r_i^{a_i})} \right]^3 = 16\pi N_i \left(\frac{r_i^{a_i-1}}{2} \right)^3$$ \hspace{1cm} (A3)

where N_i-the number of pores filled with N_2 at each pressure $P_i (=P_i/P_0)$ having radius r_i and diameter D_i.

Step iv: The term

$$\lambda_i = \left(\frac{S_i^3}{16\pi V_i^2} \right) = N_i b_i$$ \hspace{1cm} (A4)

corresponds to the *total anisotropy* λ_i of the group N_i of the pores with anisotropy b_i. The equation (A4) in combination with equation (A3) after taking logarithms, obtains the form

$$\log(\lambda_i) = \log \left(\frac{N_i}{2} \right) + (a_i - 1) \log r_i$$ \hspace{1cm} (A5)

Step v: The slopes (a_i-1) in equation (A5) are calculated from the lines $\log(\lambda_i)$ vs $\log r_i$. Then, the values of anisotropy b_i for each group i of pores are given by the simple relationship

$$b_i = 0.5 \times r_i^{(a_i-1)}$$ \hspace{1cm} (A6)