A rapid, simple method for tuning the colour of silver nanoparticles.

Deirdre M. Ledwith, Aine M. Whelan and John M. Kelly
School of Chemistry, Trinity College, University of Dublin, Dublin 2, Ireland.
E-mail: jmkelley@tcd.ie

Method
A two step seed mediated procedure is carried out. The typical procedure for the production of a green sol is given below.

Preparation of the Silver seeds.
A 20mL volume of aqueous solution containing AgNO$_3$ (2.9 x 10$^{-4}$M) and TSC (2.5 x 10$^{-4}$M) was prepared and cooled in an ice-bath. To this NaBH$_4$ (0.1M, 0.6mL) was added drop-wise with vigorous stirring. The solution became bright yellow immediately. The seeds were then stored in the dark and aged for 2 hours prior to use.

Growth of Silver Nanoplates from the seed solution.
Aqueous PVP (Xwt%, 10mL), seed solution (100µL), TSC (2.5 x 10$^{-2}$M, 300µL) and ascorbic acid (0.1M, 50µL) were combined. To this solution AgNO$_3$ (0.01M, 5 x 50µL) was added slowly with vigorous stirring. A colour change from colourless to yellow, red and finally green was observed.
A similar method to the one described above was used. The concentration of PVP was kept constant at 1wt%. 1,3-acetonediacarboxylic acid was used instead of trisodium citrate.

Figure S2: UV-vis spectra of sols prepared with A) 0.7 mM B) 0.35 mM C) 0.24 mM 1,3-acetonediacarboxylic acid instead of trisodium citrate. All other reaction conditions were unchanged.