Supplementary data

Analyzing solubility and diffusion of solvents in novel hybrid materials of poly (vinyl alcohol)/γ-aminopropyltriethoxysilane by IGC

Qiu Gen Zhang, Qing Lin Liu*, Jie Lin, Jian Hua Chen, Ai Mei Zhu

Department of Chemical and Biochemical Engineering, College of Chemistry & Chemical Engineering, Xiamen University, Xiamen, 361005, China. E-mail: qlliu@xmu.edu.cn

Part A: Calculation of solubility properties

Determination of the solubility of a solute based on IGC method depends on the measurement of retention times, t_R (min), of the solute flowing through a column packed with the polymer of interest. The t_R is related to the specific retention volume, V_g (cm3/g), by

$$V_g = (t_R - t_M) F_0 \frac{273.2}{W_p T_{col}}$$

(1)

where t_M (min) is the retention time of a ‘non-sorbed’ component (air in this study), F_0 (cm3/min) is the flow rate of gas carrier, W_p (g) is the mass of the polymer packed in the column, and T_{col} (K) is the column temperature. j is the pressure drop correction factor determined by

$$j = \frac{3 \left(\frac{P_{in}}{P_{out}} \right)^2 - 1}{2 \left(\frac{P_{in}}{P_{out}} \right)^3 - 1}$$

(2)

where P_{in} and P_{out} are the inlet and outlet pressures of the column, respectively.

Then, the value of various thermodynamic quantities can be obtained through V_g. Thus, infinite dilution activity coefficient Ω_i^∞ can be determined by

$$\ln \Omega_i^\infty = \ln \left(\frac{273.2 R}{V_g p_i^0 M_i} \right) - \frac{p_i^0}{RT_{col}} (B_1 - V_g)$$

(3)

where p_i^0 (pa) is the vapor pressure of a solute at temperature T_{col}, M_i (g/mol) is the solute molecular mass,
B_{11} is the second virial coefficient, and V_1 (cm3/mol) is the solute molar volume. The second term in the right of this equation is the correction for non-ideality of the solute.

Based on the activity coefficient, the partial molar excess free energy of mixture at infinite dilution, ΔG_m, can be calculated by

$$\Delta G_m = RT \ln \Omega_1^\infty$$ \hspace{1cm} (4)

The infinite dilution solubility coefficient, S, can be determined from the following equation by taking into account non-ideal gas behavior of vapor phase.

$$S = V_g \frac{\rho}{p_o} \exp \left[(2B_{11} - V_1) \left(\frac{p_o}{RT} \right) \right]$$ \hspace{1cm} (5)

where p_o is the standard pressure (1 atm), and ρ (g/cm3) is the density of polymer at temperature T_{col}.

The Flory–Huggins interaction parameter at infinite dilution χ_{12}^∞, which was used as a measure of the strength of interaction, is a guide in the prediction of the compatibility between a polymer and a solvent. And it can be obtained by the following equation related to Ω_1^∞

$$\chi_{12}^\infty = \ln \Omega_1^\infty - (1 - \frac{1}{r}) + \ln \frac{\rho_1}{\rho_2}$$ \hspace{1cm} (6)

where r is the molar volume ratio of solute to polymer given by

$$r = \frac{\rho_1 M_2}{\rho_2 M_1}$$ \hspace{1cm} (7)

where, ρ_1 and ρ_2 is the density of solute and polymer (g/cm3), M_1 and M_2 is the molecular weight of solute and polymer, respectively (g/mol).

Part B: Calculation of diffusion properties

According to Van Deemter’s model 33, infinite dilution diffusion coefficient D^∞ is of the form
\[D^m = \frac{8d_p^2}{\pi^2 C} \left[\frac{k}{(1+k)^2} \right] \]

where \(d_p \) (m) is the thickness of the polymer coated on the support material in the column, \(C \) is a parameter related to the column characteristics, \(k \) is the partition ratio given by

\[k = \frac{t_R - t_M}{t_M} \]

The thickness of the polymer coated on the support material \(d_p \) is calculated from the equation

\[d_p = \frac{W_p \rho_d d_d}{3 \rho_p W_d} \]

where \(\rho_p \) and \(\rho_d \) are the density of the polymer and the support material (g/cm\(^3\)), \(W_p \) is the mass of the polymer on the support material, \(W_d \) (g) and \(d_d \) (m) are the mass and the average diameter of the support material in the column, respectively.

From Plate theory \(^3\), the height equivalent to a theoretical plate \(H \) (m) is determined by

\[H = A + \frac{B}{u} + Cu = L / n \]

where \(u \) (m/s) is the linear velocity of carrier gas, \(L \) (m) is the length of column, \(A, B \) and \(C \) are constants independent of carrier gas flow rate, \(n \) is the number of theoretical plate determined by

\[n = 5.54 \left(\frac{t_R}{W_{1/2}} \right)^2 \]

where \(W_{1/2} \) (min) is the full peak width at half-maximum. \(u \) is calculated by

\[u = j \frac{F_0 T_{col}}{a T_{flow}} \]

where \(T_{flow} \) (K) is the temperature of the flowmeter, \(a \) (m\(^3\)/m) is the volume of gas-phase per unit length.

\(C \) is derived from equation (11) in conjunction with equations (12) and (13). The term \(B/u \) becomes small and can be negligible in relation to \(A + Cu \) at sufficiently high flow rates. Then the plot of \(H \) vs. \(u \) yields a straight line with slope \(C \).
Tables

Table S1 Parameters of the columns packed with the hybrid materials with various APTEOS contents

<table>
<thead>
<tr>
<th></th>
<th>PVA</th>
<th>PA-2.5</th>
<th>PA-5.0</th>
<th>PA-7.5</th>
<th>PA-10.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>W_p (g)</td>
<td>0.472</td>
<td>0.397</td>
<td>0.401</td>
<td>0.431</td>
<td>0.422</td>
</tr>
<tr>
<td>d_p (m)</td>
<td>4.36×10^{-6}</td>
<td>4.29×10^{-6}</td>
<td>4.24×10^{-6}</td>
<td>4.19×10^{-6}</td>
<td>4.16×10^{-6}</td>
</tr>
<tr>
<td>ρ_p (g/cm3)</td>
<td>1.325</td>
<td>1.347</td>
<td>1.361</td>
<td>1.378</td>
<td>1.391</td>
</tr>
</tbody>
</table>

W_p (g) is the mass of the polymer packed in the column, d_p (m) is the thickness of the polymer coated on the support material in the column, ρ_p is the density of the PVA hybrid materials (g/cm3).

Figures
Fig. S1 Effects of APTEOS content (a) and column temperature (b) on the partial molar excess free energy of mixture ΔG_m of hybrid material-solvent (1 water; 2 methanol; 3 ethanol; 4 isopropanol; 5 cyclohexane; 6 benzene)

Fig. S2 Temperature dependences of the solubility coefficients of solvents S in PA-5.0 (1 water; 2 methanol; 3 ethanol; 4 isopropanol; 5 cyclohexane; 6 benzene)
Fig. S3 Temperature dependences of the interaction parameters of PA-5.0-solvent pairs χ_{12}^∞ (1 water; 2 methanol; 3 ethanol; 4 isopropanol; 5 cyclohexane; 6 benzene)

Fig. S4 Relationship of the height equivalent to a theoretical plate H with the linear velocity of carrier gas u in column PA-5.0 at 378.15 K (1 water; 2 methanol; 3 ethanol; 4 isopropanol; 5 cyclohexane; 6 benzene)
Fig. S5 Arrhenius plots for the infinite dilution diffusion coefficients of solvents in the hybrid materials PA-5.0 (1 water; 2 methanol; 3 ethanol; 4 isopropanol; 5 cyclohexane; 6 benzene)