Supporting Information

Visible and Near-Infrared Chemosensor for Colorimetric and Ratiometric Detection of Cyanide

Gang Qian,a,b Xianzhen Li,c and Zhi Yuan Wang*a,c

a State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, b Graduate School of Chinese Academy of Sciences, Changchun 130022, China, and c Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6

* To whom all the correspondence should be addressed. E-mail: wayne_wang@carleton.ca
Figure S1. Color changes of 2 (20 μM in DMF/H₂O = 99/1 v/v) in the presence of 5.0 molequiv. of anions after 1 hour at 60 °C. From left: no anion, CN⁻, F⁻, AcO⁻, H₂PO₄⁻, Cl⁻, Br⁻, I⁻, NO₃⁻ and HSO₄⁻.

(a)

(b)

Figure S2. (a) Color changes of 3 (10 μM) in DMF/H₂O solution (99:1 v/v) in the presence of 2 equivalents of anions. From left: CN⁻, F⁻, Cl⁻, Br⁻, I⁻, H₂PO₄⁻, HSO₄⁻, NO₃⁻, and no anion. (b) Color contrast of 3 in DMF/H₂O solution (99:1 v/v) in the presence of 2 equivalents of CN⁻ (0.5 μM, 1 μM, 5 μM, 10 μM, 50 μM and 100 μM). Left is the blank solution of 3.
Figure S3. Partial 1H NMR spectral change (300 MHz, 10 mM, CDCl$_3$, 25 °C) of model compound 4: (a) before and (b) after addition of 4 molequiv. of tetrabutylammonium cyanide.
Figure S4. 13C NMR spectral change (100 MHz, a: CDCl$_3$, b: d_8-THF, 25 °C) of model compound 4 (a) before and (b) after addition of 4 molequiv. of tetrabutylammonium cyanide.
Figure S5. FTIR spectral change of model compound 4 (a) before and (b) after addition of 4 molequiv. of tetrabutylammonium cyanide.