Supporting Information

Ir(ppy)$_3$ phosphorescent microrods and nanowires: a promising micro-phosphor

Hao Wang,a,b Qing Liao,a Hongbing Fu,*a Yi Zeng,a,b Ziwen Jiang,a,b Jinshi Ma,a and Jiannian Yao*$_a$

a Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, People's Republic of China.

b Graduate University of the Chinese Academy of Sciences (GUCAS), Beijing 100049, People's Republic of China.

E-mail: (H.F.) hongbing.fu@iccas.ac.cn, (J.Y.) jnyao@iccas.ac.cn
Fig. S1 The energy dispersive X-ray (EDX) spectrum of the microrods. The peak of Si arises from the Si grid for SEM characterization. The presence of O comes mainly from atmospheric contamination due to exposure of the sample to air.

Fig. S2 Measured (black) and calculated (green) PL spectra of Ir(ppy)$_3$ in dichloromethane. The sum spectrum was obtained by sum of the calculated zero (0-0), one (0-1), and two (0-2) phonon bands.
Supplementary material (ESI) for Journal of Materials Chemistry
This journal is © The Royal Society of Chemistry 2008

(A)

Intensity vs. Delay time (ns)

$\tau_1 : 38.6 \text{ ns}$

(B)

Intensity vs. Delay time (μs)

$\tau_1 : 1.16 \text{ \mu s}$
Fig. S3 The PL signal decay curves for Ir(ppy)$_3$ in air saturated toluene solution (A), Ir(ppy)$_3$ in degassed toluene solution (B) and Ir(ppy)$_3$ doped in PMMA film (C).