Composite Microspheres with PAM Microgel Core and Polymerisable Surfactant/Polyoxometalate Complexes Shell

Hong Lia,b, Ping Zhangc, Long Zhanga, Tong Zhoua, Daodao Hua,*

a School of Chemistry and Materials Science, Shaanxi Normal University, Xi’an, Shaanxi 710062, People’s Republic of China

b College of Environment and Chemical Engineering, Xi’an Polytechnic University, Xi’an, Shaanxi 710048, People’s Republic of China

c Xi’an Polytechnic University, Xi’an, Shaanxi 710048, People’s Republic of China

To whom correspondence should be addressed. E-mail: daodaohu@snnu.edu.cn

Electronic Supplementary Information

Figure 1. SEM images of the PAM/APDDAB-PWA composite microspheres prepared using the porous PAM microspheres (cross-linker BS: 0.06 g) as templates. The weight ratio of APDDAB to PAM microgels: 5% (A, B); 10% (C, D); 30% (E, F); 50% (G, H). Without ultrasonication (A, C, E, G); with ultrasonication (B, D, F, H).

Figure 2. XPS spectrum of the PAM/APDDAB-PWA composite microspheres.

Figure 3. Thermogravimetric analysis of PAM microgels (a), the PAM/APDDAB-PWA composite microsphere (b) and APDDAB-PWA complexes (c).

Figure 4. EDX spectrum of the PAM/APDDAB-PWA composite microspheres.
Figure 1. SEM images of the PAM/APDDAB-PWA composite microspheres prepared using the porous PAM microspheres (cross-linker BS: 0.06 g) as templates. The weight ratio of APDDAB to PAM microgels: 5% (A, B); 10% (C, D); 30% (E, F); 50% (G, H). Without ultrasonication (A, C, E, G); with ultrasonication (B, D, F, H).
Figure 2. XPS spectrum of the PAM/APDDAB-PWA composite microspheres (Inlet: -NH and N⁺).
Figure 3. Thermogravimetric analysis of typical PAM microgels (a), the PAM/APDDAB-PWA composite microsphere (b) and APDDAB-PWA complexes (c).
Figure 4. EDX spectrum of the PAM/APDDB-PWA composite microspheres.