Supplementary Data

Synthesis of Ordered Mesoporous Bifunctional Ti-SiO$_2$-Polymer Nanocomposite

HuaQin Chu,a Chao Yua, Ying Wan,*a Dongyuan Zhaob

a Department of Chemistry, Shanghai Normal University, Shanghai 200234, P. R. China; b Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China

* To whom correspondence should be addressed. Tel: 86-21-6432-2516; Fax: 86-21-6432-2272; E-mail: ywan@shnu.edu.cn
Fig. S1. V-t plot analysis for mesoporous Ti-SiO$_2$-polymer composites with various Si/Ti ratios and polymer contents MTSP-n-50 (a) and MTSP-n-35 (b) ($n = 50 – 10$), which are prepared from the triblock-copolymer-templating route using TIPOT as a titanium source, TEOS as a silica source, preformed resin as a polymer source and triblock copolymer F127 as a template.
Fig. S2. N$_2$ sorption isotherms (a) and pore-size distribution curves (b) for the mesoporous Ti-SiO$_2$ derivation which is obtained from the bifunctional composite MTSP-20-50 after combustion at 500 °C in air.
Fig. S3. Small-angle XRD patterns for MTSP-20-50 after calcination at 600 °C in nitrogen, and the inorganic solid and carbon descendants after further combustion at 500 °C in air and acidic treatment, respectively.