Application of metal-organic frameworks with coordinatively unsaturated metal sites in storage and separation of methane and carbon dioxide

Pascal D. C. Dietzel,* Vasileios Besikiotis, and Richard Blom

SINTEF Materials and Chemistry, pascal.dietzel@sintef.no

Figure S1. Experimental data of adsorption and desorption of CO\(_2\) in Ni\(_2\)(dhtp) (top) and Mg\(_2\)(dhtp) (bottom) at 278, 343, and 473 K, as determined by the volumetric method.

Figure S2. Experimental data of adsorption and desorption of CH\(_4\) in Ni\(_2\)(dhtp) (top) and Mg\(_2\)(dhtp) (bottom) at 179, 283, 298, 313, and 343 K, as determined by the volumetric method.

Figure S3. CO\(_2\) adsorption in Ni\(_2\)(dhtp) (red) and Mg\(_2\)(dhtp) (blue) at 278, 343, and 473 K. Top: as mass uptake; center: in molar amounts with linear pressure axis; bottom: in molar amounts with logarithmic scale of the pressure axis.

Figure S4. CH\(_4\) adsorption in Ni\(_2\)(dhtp) (red) and Mg\(_2\)(dhtp) (blue) at 179, 283, and 343 K. Top: as mass uptake; center: in molar amounts with linear pressure axis; bottom: in molar amounts with logarithmic scale of the pressure axis.

Figure S5. Isosteric heat of adsorption of CH\(_4\) in Ni\(_2\)(dhtp) (red) and Mg\(_2\)(dhtp) (blue) as a function of loading, calculated from the isotherms at 179 and 283 K.

Figure S6. Adsorption isotherms of N\(_2\) in Ni\(_2\)(dhtp) at 298, 313, 343, 393, and 473 K.

Figure S7. Comparison of the amounts adsorbed of CO\(_2\) (blue), CH\(_4\) (green), and N\(_2\) (red) in Ni\(_2\)(dhtp) at a) 298 K, b) 343 K, c) 393 K, and d) 473 K with enlarged ranges where it aids the analysis.
Figure S1. Experimental data of adsorption and desorption of CO\textsubscript{2} in Ni\textsubscript{2}(dhtp) (top) and Mg\textsubscript{2}(dhtp) (bottom) at 278, 343, and 473 K, as determined by the volumetric method.
Figure S2. Experimental data of adsorption and desorption of CH$_4$ in Ni$_2$(dhtp) (top) and Mg$_2$(dhtp) (bottom) at 179, 283, 298, 313, and 343 K, as determined by the volumetric method.
Figure S3. CO$_2$ adsorption in Ni$_2$(dhtp) (red) and Mg$_2$(dhtp) (blue) at 278, 343, and 473 K. Top: as mass uptake; center: in molar amounts with linear pressure axis; bottom: in molar amounts with logarithmic scale of the pressure axis.
Figure S4. CH₄ adsorption in Ni₂(dhtp) (red) and Mg₂(dhtp) (blue) at 179, 283, and 343 K. Top: as mass uptake; center: in molar amounts with linear pressure axis; bottom: in molar amounts with logarithmic scale of the pressure axis.
Figure S5. Isosteric heat of adsorption of CH$_4$ in Ni$_2$(dhtp) (red) and Mg$_2$(dhtp) (blue) as a function of loading, calculated from the isotherms at 179 and 283 K.
Figure S6. Adsorption isotherms of N$_2$ in Ni$_2$(dhtp) at 298, 313, 343, 393, and 473 K.
Figure S7. Comparison of the amounts adsorbed of CO$_2$ (blue), CH$_4$ (green), and N$_2$ (red) in Ni$_2$(dhtp) at a) 298 K, b) 343 K, c) 393 K, and d) 473 K with enlarged ranges where it aids the analysis.