Electronic Supplementary Information

Stimuli-responsive europium-containing metallo-supramolecular polymers

Justin R. Kumpfer,a Jihzu Jina and Stuart J. Rowana,b,c

a Department of Macromolecular Science & Engineering, Case Western Reserve University, 2100 Adelbert Road, Cleveland, Ohio 44106-7202, USA. E-mail: stuart.rowan@case.edu

b Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, USA.

c Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA.

Table of Contents

Fig. S1 1H-NMR of 1.
Fig. S2 13C-NMR of 1.
Fig. S3 MALDI-TOF of 1.
Fig. S4 MALDI-TOF/TOF of 1.
Fig. S5 Solution PL of metallo-supramolecular polymers.
Fig. S6 DMTA of metallo-supramolecular polymer films.
Fig. S7 TGA of metallo-supramolecular polymer films.
Fig. S8 Photograph of the 70:30 Zn2+:Eu3+:1 dipped into triethyl phosphate liquid.
Table S1 d-spacings from WAXS of metallo-supramolecular polymer films.
Fig. S1 1H-NMR of 1.

Fig. S2 13C-NMR of 1.
Fig. S3 MALDI-TOF of 1; matrix: HABA [2-(4-hydroxyphenylazo)benzoic acid] with a sodium trifluoroacetate additive.

Figure S4 MALDI-TOF/TOF of 1; matrix: HABA [2-(4-hydroxyphenylazo)benzoic acid] with a sodium trifluoroacetate additive. Fragment peak at 355.4 m/z corresponds to [M+H] of Mebip ligand.
Fig S5 Photoluminescence spectra (PL) of 1 (25 mM) with varying ratios of Zn$^{2+}$:Eu$^{3+}$ in solution (excited at 385 nm).

Fig. S6 Dynamic mechanical thermal analysis (DMTA) of films made from 1 with varying ratios of Zn$^{2+}$:Eu$^{3+}$. Samples were cooled directly to -110 °C and run. The increase in modulus at -35 °C is attributed to a cold crystallization of the p(THF) core.
Fig. S7 TGA of films made from 1 with varying ratios of Zn$^{2+}$:Eu$^{3+}$. Thermogravimetric analyses were carried out on a TA Instruments TGAQ500 under N$_2$.

Fig. S8 Photograph of the 70:30 Zn$^{2+}$:Eu$^{3+}$:1 dipped into triethyl phosphate liquid
Table S1 WAXS d-spacings of select films of I and varying ratios of Zn$^{2+}$:Eu$^{3+}$.

<table>
<thead>
<tr>
<th>Zn$^{2+}$:Eu$^{3+}$</th>
<th>d$_1$ (Å)</th>
<th>d$_2$ (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100:0</td>
<td>60.2</td>
<td>9.8</td>
</tr>
<tr>
<td>90:10</td>
<td>50.3</td>
<td>9.7</td>
</tr>
<tr>
<td>70:30</td>
<td>-</td>
<td>9.5</td>
</tr>
<tr>
<td>50:50</td>
<td>58.6</td>
<td>9.5</td>
</tr>
</tbody>
</table>