A molecular Mg(II) single source precursor for MgO. Synthesis and characterisation of MgO nanoparticles, MgO thin films and polycrystalline MgO nanorods.

Mikhail Pashchanka, Rudolf C. Hoffmann, and Jörg J. Schneider*

Supplementary information

Complete discussion of the gaseous decomposition products from polycarbonate membrane:

The scheme of decomposition can be summarily expressed as follows:

\[\text{CH}_3\text{CH}_3\text{O} - \text{O} - \text{O} \text{n} \rightarrow t^\circ > 360^\circ \text{C} \text{CO}_2 + \text{phenols + other} \]

(CO, CH4, cresols, bisphenol A, diphenylcarbonate etc.)

The release of gaseous products from Whatman Nuclepore™ templates and the corresponding sharp increase of ionic currents was detected via mass-spectrometry in the temperature interval between 400 and 600 °C.

Figure 1: Qualitative MS curves of the commercial polymeric porous membranes analysed in oxidizing atmosphere.
First, water (H$_2$O, m/z$^+$ 18) and carbon dioxide (CO$_2$, m/z$^+$ 44) is released, presumably, not only from decomposed polymer but also including gas and moisture adsorbed in the pores. Some decrease of the ionic current corresponding to oxygen (O$_2$, m/z$^+$ 32) is observed, as it is consumed during oxidative processes. The further reaction is accompanied by the significant release of carbon monoxide (CO, m/z$^+$ 28), and detectable amounts of benzene (C$_6$H$_6$, m/z$^+$ 78) and phenol (C$_6$H$_5$OH, m/z$^+$ 94).
Figure 2: TG-coupled MS of Tris(aquo)-bis[2-(methoxyimino)propanato]magnesium in (a) helium and (b) oxygen atmosphere.
Figure 3: Grazing incidence XRD (including automated background subtraction) of MgO film on quartz (thickness about 270 nm) obtained by repeated spincoating of 12 layers on quartz and annealing at 210°C, followed by calcination at 450°C. Background subtraction was carried out using the routine provided by the program Match!, version 1.9d from Crystal Impact.
Figure 4: Optical micrographs of MgO film on quartz (thickness about 110 nm) obtained by repeated spincoating of 5 layers on quartz and annealing at 210°C, followed by calcination at 450°C; (a) cooling rate > 10 K/h (furnace characteristic); (b) quenching to room temperature.

Figure 5: Images from optical profilometry corresponding to samples in Figure 4.
Figure 6: SEM image of MgO film on quartz (thickness about 110 nm) obtained by repeated spincoating of 5 layers on quartz and annealing at 210°C, followed by calcination at 450°C. Break lines obtained by quenching to room temperature.
Figure 7: XPS survey spectra of MgO films after calcination at different temperatures for 1 hour. Samples treated with additional argon sputtering in the vacuum chamber are mentioned in the figure.

Figure 8: XPS spectra of Mg 1s, O 1s and C 1s signals of films after calcination at different temperatures for 1 hour. Samples treated with additional argon sputtering in the vacuum chamber are mentioned in the legend.