From the analysis of the delayed fluorescence data and using a method previously developed,\(^1\) it is possible to obtain the singlet-triplet energy gap (\(\Delta E_{\text{ST}}\)) from the temperature dependence of the \(I_{\text{DF}}/I_{\text{PF}}\) ratio using the following equation

\[
\ln \left[\frac{I_{\text{PF}}}{I_{\text{DF}}} \right] = \ln \left[\frac{1}{\Phi_T} \left(\frac{1}{\Phi_S^\infty} - 1 \right) \right] + \frac{\Delta E_{\text{ST}}}{RT} \tag{eq. S1}
\]

However, the correct value of the triplet quantum yield (\(\Phi_T\), assumed to be temperature-independent) is required for a linear least-squares fit. The shape of the plot is very sensitive to \(\Phi_T\) and is in general nonlinear (Figure S-1). Variation of this parameter in the search for maximum linearity yields its best value and, simultaneously, \(\Delta E_{\text{ST}}\).
Figure S-1. Fit of $\ln(I_{PF}/I_{DF}-(1/\Phi_T-1))$ versus $1/T$ according to eq. S1 for a film of PS-C$_{70}$ nanoparticles (20 °C to 90 °C in 10 °C steps). The best straight line ($r^2 = 0.998$) is obtained for $\Phi_T = 0.987$.

Figure S-2. Temperature dependence of the luminescence quantum yields (Φ_L) of PS-C$_{70}$. Experimental points are shown as circles.

References