Shape memory epoxy: Composition, structure, properties and shape memory performances

Ingrid A. Rousseau* and Tao Xie*

*Corresponding Author: ingrid.rousseau@gm.com, Tel: 586-986-0638

Supplementary Equations

\[L_d^d(N) = L_o(N) + \Delta L_{\text{def}}(N) \]
\[L_m^m(N) = L_o(N) + \Delta L_{\text{def}}(N) - \Delta CLTE_{\varepsilon_m} - \Delta L_{\text{rel}}(N) \]
\[L_u^u(N) = L_o(N) + \Delta L_{\text{def}}(N) - \Delta CLTE_{\varepsilon_m} - \Delta L_{\text{rel}}(N) - \Delta L_{u\text{rel}}(N) \]
\[L_r^r(N) = L_o(N) + \Delta L_{\text{def}}(N) - \Delta CLTE_{\varepsilon_m} - \Delta L_{\text{rel}}(N) - \Delta L_{u\text{rel}}(N) + \Delta CLTE_{\varepsilon_m} + \Delta L_{\text{rec}}(N) \]

In Eqs. (S1) through (S4), \(\Delta L_{\text{def}} \) denotes the change in length of the sample imposed by the deformation. \(\Delta L_{c\text{rel}} \) and \(\Delta L_{u\text{rel}} \) represent the change in length of the sample due to strain relaxation upon cooling and unloading, respectively. Finally, \(\Delta L_{\text{rec}} \) stands for the change in sample length occurring during strain recovery in the last step of the SMC. The apparent CLTE of our epoxies was shown to be a function of \(\varepsilon_m^d \). Therefore, the CLTE adopts specific values at \(\varepsilon_u \) and \(\varepsilon_m^d \): CLTE_{\varepsilon_u} or CLTE_{\varepsilon_m}, respectively. Furthermore, \(\Delta L_{\text{def}} \) can be expressed as follows:

\[\Delta L_{\text{def}}(N) = L_o \left(\varepsilon_m^d(N) - \varepsilon_o(N) \right). \]

During a shape memory cycle, the strains adopted by the samples can be defined by:

\[\varepsilon_o(N) = \frac{L_o(N) - L_o}{L_o}, \]
\[\varepsilon_m^d(N) = \frac{L_m^d(N) - L_o}{L_o}, \]
\[\varepsilon_u(N) = \frac{L_u(N) - L_o}{L_o}, \quad (S8) \]

and,

\[\varepsilon_p(N) = \frac{L_p(N) - L_o}{L_o}. \quad (S9) \]

By substituting Eqs. (S8) and (S9) in Eq. (3) for the shape fixity and by substituting with Eqs. (S1) and (S3), \(R_f \) becomes:

\[\frac{R_f}{100} = \frac{L_m^d(N) - L_o - \Delta T \cdot CLTE_{\varepsilon_m} - \Delta L_{rel}^c - \Delta L_{rel}^u}{L_m(N) - L_o}. \quad (S10) \]

Eq. (S7) allows for \(R_f \) to be rewritten:

\[\frac{R_f}{100} = 1 - \frac{\Delta L_{rel}^c + \Delta L_{rel}^u}{L_o e_m^{d}(N)} - \frac{\Delta T \cdot CLTE_{\varepsilon_m}}{L_o e_m^{d}(N)}, \quad (S11) \]

where the second term in the right hand side is negligible (<<1).

Supplementary Figures

Figure S1 Schematic representation of the evaluation of the shape memory variables (deformation temperature \(T_d \), setting temperature \(T_s \), storage moduli at \(T_d \) and \(T_s \) (\(E'_d \) and \(E'_s \), respectively), and transformation temperature \(T_{trans} \)) determined from the equilibrium mechanical data (storage modulus \(E' \), loss modulus \(E'' \) and loss angle (\(\delta \)), glass transition temperature \(T_g \)) measured for each epoxy SMP.
Figure S 2 Effect of increasing the number of consecutive shape memory cycles (N) on (a) the shape fixity (R_f), (b) and (c) the shape recovery ($R_{\text{r min}}$) and ($R_{\text{r} u}$), respectively, of our epoxy SMPs. The shape recovery and shape fixity reach stable values after the first cycle is completed except for E-C10, which incorporates flexible pendant decyl chains. This is likely due to a rearrangement of the decyl chains during the deformation stage which disables them from
recovering their original state during the recovery stage.
Figure S 3 Effect of the deformation strain $\varepsilon_u(N)-\varepsilon_o(N)$ on (a) the recovery speed (V_r) and (b) the recovery time (t_r) for the shape memory epoxies. Four successive shape memory cycles were performed on each sample, each under increasing deformation strains. V_r varies linearly with the recoverable strain ($\varepsilon_u(N)-\varepsilon_o(N)$), and t_r varies accordingly.
Figure S 4 Influence of the recovery heating rate on (a) the temperatures at which 10 and 90% strain recovery are achieved (T_{10%} and T_{90%}, respectively) and (b) the response temperature (T_r).
Figure S 5 Influence of the recovery heating rate on (a) the recovery speed and (b) the recovery time of the epoxy SMPs. Above 10 °C/min, V_r and t_r leveled off most likely as a result of low heat transfer which became the limiting factor for the shape memory response.