Electronic Supplementary Information

Imidazolium Modified Carbon Nanohorns: Switchable Solubility and Stabilization of Metal Nanoparticles

Nikolaos Karousis,*a Toshinari Ichihashi,b Shimou Chen,c Hisanori Shinohara,c Masako Yudasaka,b Sumio Iijima,b and Nikos Tagmatarchis*a

a Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vass. Constantinou Avenue, Athens 116 35, Hellas
b Nanotube Research Centre, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Japan
c Department of Chemistry, Nagoya University, Nagoya 464-8602, Japan
Fig. S1. (a) Representative HR-TEM image and (b) EDX spectra of $\text{[Br}^-\text{]}$ N-n-butyl imidazolium CNHs decorated with Pt nanoparticles (stars denote impurity elements which are detected because of their presence in the microscope equipment, sample holder, and crystal detector).
Fig. S2. EDX spectra of [BF$_4$]$^-$ imidazolium-modified CNHs 3b. The elements of B and F are masked under the peak for C and O as shown by the black arrow. Red arrow indicates the absence of Br peak (stars denote the elements Cu, Fe, Al, and Si which are detected because of their presence in the microscope equipment, sample holder, and crystal detector).
Fig. S3. ATR-IR spectra of oxidized CNHs 1 (black), imidazole-modified CNHs 2 (red) and [PF₆⁻] imidazolium-modified CNHs 3d (blue).
Fig. S4. Absorption spectra a) of $[\text{Br}^-]$ imidazolium-modified CNHs decorated with Pd nanoparticles (black) and Pd(OAc)$_2$ (red), and b) $[\text{Br}^-]$ imidazolium-modified CNHs decorated with Pt nanoparticles (black) and H$_2$PtCl$_6$ (blue), in DMF.