Supplemental Information (SI)

Robust blue hosts containing indene-substituted anthracene chromophores for highly efficient organic light-emitting diodes

Zhen-Yuan Xia, a Zhi-Yun Zhang, a Jian-Hua Su, a Qiong Zhang, a Ka-Man Fung, b Mei-Ki Lam, b King-Fai Li, b Wai-Yeung Wong, c Kok-Wai Cheah, b He Tian a* and Chin H. Chen c,d

a Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science & Technology, Shanghai 200237, China. Fax: (+86) 21-64252288; E-mail: tianhe@ecust.edu.cn

b Centre for Advanced Luminescence Materials, Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China;

c Centre for Advanced Luminescence Materials, Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; E-mail: rwywong@hkbu.edu.hk

d Displays & Lighting Center, National Engineering Lab of TFT-LCD Materials and Technologies, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
Experimental section:

The CV curves of compounds DMIP-1-NA and DMIP-2-NA:

Fig. 1. CV traces of DMIPNA (1×10^{-3}M) in CH2Cl2 (0.1M Bu4NPF6).
Working electrode: platinum disk, diameter 1 mm; sweep rate 100 mV s^{-1}. The scanning potential window was 1.0–1.6 V and back to 1.0 V.
The DSC and TGA curves of compounds DMIP-1-NA and DMIP-2-NA:

![DSC and TGA curves](image)

Fig. 2. The DSC spectra (differential scanning calorimetry) of the compound DMIP-1-NA and DMIP-2-NA. (10 mg sample was added to the pan, then it is heated up to 300 °C or (350 °C) at 20 °C/min and go through a quick cooling at 40 °C/min by the ice-bath, then scan it and collect the data).

Fig. 3 The TGA spectra (thermogravimetric analysis) of the compound DMIP-1-NA and DMIP-2-NA. (The two samples were heated up to 900 °C at a heating rate of 20 °C/min).
1H NMR, 13C NMR and High Resolution Mass Spectra of DMIP-1-NA and DMIP-2-NA: