Highly Porous and Monodisperse Magnetic Silica Beads
Prepared by a Green Templating Method

Sébastien Abramson, Clémentine Meiller, Patricia Beaunier, Vincent Dupuis,
Laurent Perrigaud, Agnès Bée and Valérie Cabuil

Supplementary material (ESI) for Journal of Materials Chemistry

Fig. S1: Photograph of the MS beads series

Fig. S2: DRIFT spectra of MA, MAS, and MS beads.

Fig. S3: TEM images of microtome section of MAS beads

Fig. S4: normalised UV-visible spectra of MeB in water and in HNO₃ aqueous solution, and of the supernatants after washing of the beads with HNO₃ aqueous solution.
Fig. S1: Photograph of the MS beads series (each sample is characterized by a different value of Φ_{Fe2O3}; from left to right Φ_{Fe2O3} increases from 0 to 2.1%)
Fig. S2: DRIFT spectra of MA (1), MAS (2) and MS (3) beads. ($\Phi_{Fe2O3} = 2.1\%$)
Fig. S3: TEM images of microtome section of MAS beads (a) $\Phi_{Fe_2O_3} = 0.06\%$;
(b) $\Phi_{Fe_2O_3} = 0.96\%$
Fig. S4: normalised UV-visible spectra of MeB in water and in 10^{-2} mol L^{-1} HNO_3 aqueous solution, and of the supernatants after washing of the beads with 10^{-2} mol L^{-1} HNO_3 aqueous solution.