Electronic supplementary information (ESI)

Amorphous nano-structured silicas for high-performance carbon dioxide confinement

Shinichiro Ichikawa,¹ Tsunetake Seki,† Mizuki Tada,¹ Yasuhiro Iwasawa¹ and Takao Ikariya*¹

¹ Department of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan

¹ Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

† Research Fellow of the Japan Society for the Promotion of Science

* To whom correspondence should be addressed. E-mail: tikariya@apc.titech.ac.jp
Contents

1. Additional experimental section S3
 1.1. Raman spectroscopy S3
 1.2. Transmission electron microscopy (TEM) S3
 1.3. N₂ and Ar adsorption measurements S3
 1.4. References S3

2. Figs. S1–S4 S4 and S5
1. Additional experimental section

1.1. Raman spectroscopy

Raman spectra of adsorbed CO$_2$ were measured using an NRS-2100 spectrometer (JASCO) with a 514.5-nm laser (laser power 5 mW, exposure time 900 s × 2) and a resolution of 2 cm$^{-1}$. Indene under inert atmosphere or an artificial diamondS1 (Tokyo Progress System, Raman shift 1332 cm$^{-1}$) was used for the wavenumber calibration. The spectra of CO$_2$-condined adsorbents were recorded under ambient conditions, while the measurement of solid CO$_2$ was performed at -170 °C with a cooled cell (Linkam, model THMS600/LK-600PM/L-600A).

1.2. Transmission electron microscopy (TEM)

TEM measurements were performed on a JEM-2010F (JEOL) equipped with a field emission gun (operated at 200 kV). The S-400 and S-800 samples were pretreated at 400 °C for 3 h in a stream of dry air (dew point ca. -40 °C) prior to the measurements.

1.3. N$_2$ and Ar adsorption measurements

Surface areas and pore structures were characterized by measuring the N$_2$ and Ar adsorption–desorption isotherms using a BELSORP-mini (BEL Japan) for N$_2$ and an Autosorb-1-MPa analyzer (Quantachrome) for Ar, respectively. Before the measurements, the samples were treated at 400 °C for 3 h in a stream of dry air (dew point ca. -40 °C), and subsequently at 120 °C for 3 h under N$_2$ flow on the BELSORP-mini apparatus and 200 °C for 3 h under vacuum ($<10^{-5}$ Pa) on the Quantachrome apparatus, respectively.

1.4. References

Fig. S1 Comparison of the Raman spectra of adsorbed CO$_2$ between S-Kan and zeolite 13X. For experimental details, see “Notes and references section§” and “Additional experimental section in ESI”. Indene under inert atmosphere was used for the wavenumber calibration.

Fig. S2 Saito–Foley pore-size distributions of S-400 and S-800.
Fig. S3 Pore-size distributions of S-400 and S-800 determined by the non-local density functional theory (NL-DFT).

Fig. S4 TEM images of S-400 (left) and S-800 (right). Note that the mean first-order-particle size was larger for S-800 than for S-400 due to the difference in calcination temperature that determines the extent of sintering.