Supporting Information

Solution-processable conjugated polymers containing alternating 1-alkyl-1,2,4-triazole and N=S=N Links

Mingfeng Wang, Fred Wudl*

Department of Chemistry and Biochemistry, Center for Polymers and Organic Solids, Mitsubishi Chemical Center for Advanced Materials and Materials Research Laboratory, University of California, Santa Barbara, CA 93106-6105
Figure S1. 1H-NMR (DMSO-d6) of DDTA.
Figure S2. 13C-NMR (DMSO-d6) of DDTA.
Figure S3. UV-vis absorption spectra of PBSDDT-1 in THF prepared under different conditions. This polymer was synthesized from the polymerization of BSDDT-1 that was prepared by using N-sulfinyl-p-toluenesulfonamide as the sulfinylating agent. DMAP was used as the catalyst for the polymerization.
Figure S4. FTIR spectra of DDTA-1 and PBSDDT-1 that was purified twice by precipitation in CH$_3$CN. This polymer was synthesized from the polymerization of BSDDT that was prepared by using N-sulfinyl-p-toluenesulfonamide as the sulfinylating agent. DMAP was used as the catalyst for the polymerization. The polymer product was purified twice by precipitation in CH$_3$CN.
Figure S5. 1H-NMR (CDCl$_3$) of PBSDDT-2. This polymer was synthesized from the polymerization of BSDDT-1 that was prepared by using N-sulfinyl-p-toluene sulfonamide as the sulfinylating agent. AlCl$_3$ was used as the catalyst for the polymerization.
Figure S6. FTIR spectra of DDTA and PBSDDT-2. This polymer was synthesized from the polymerization of BSDDT-1 that was prepared by using N-sulfinyl-p-toluencesulfonamide as the sulfinylating agent. AlCl₃ was used as the catalyst for the polymerization.