Supporting information

Selective Synthesis and Magnetic Properties of Uniform CoTe and CoTe₂ Nanotubes

Rongrong Shi, a Xiaohe Liu, a* Youguo Shi, b Renzhi Ma, b Baoping Jia, b Haitao Zhang, b and Guanzhou Qiu a

a Department of Inorganic Materials, Central South University, Changsha, Hunan 410083, China;

b International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan.

Figure S1. TEM image (A) of the CoTe nanotubes prepared by using H₂TeO₃ as Te source and with the surfactant SDS (1 mmol) processed at 140 °C for 24 h. Low- and high-magnification SEM images (B-D) of the CoTe nanorods prepared by using Na₂TeO₃ as Te source with the absence of surfactants at 140 °C for 24 h.
Figure S2. The evolution of the XRD patterns of the products obtained by using 0.001 mol Co(NO₃)₂·6H₂O and 0.002 mol H₂TeO₃ with the surfactant SDS (1 mmol) processed at 140 °C for 48 h: (A) without NaOH; (B) 10 mL 1.0 M NaOH.
Figure S3. Energy dispersion spectroscopy (EDS) images of CoTe and CoTe$_2$ nanotubes. The characteristic peaks for both Co and Te are observed. The atomic ratios are calculated to be about 1:1 for CoTe and 1:2 for CoTe$_2$, which matched their stoichiometries quite well.