Electrochemical Reduction of CO₂ in a Proton Conducting Solid Oxide Electrolyzer-Supporting Information

Kui Xie, a,b Yaoqing Zhang, a Guangyao Meng, b and John T.S. Irvine*a

a School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, UK. Fax: 44 1334 463808; Tel: 44 1334 463844; E-mail: jtsi@st-andrews.ac.uk
b Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.

Fig.S1* Schematic of testing conditions

Fig.S2* Cross-sectional (left) and surface (right) view of half cell with BCZY Z electrolyte on NiO-BCZY Z substrate
Fig.S3* Bode plot of solid oxide electrolyzer under different external loadings

Fig.S4* Mass spectroscopy of output gas in electrochemical reduction process
Fig. S5* Mass spectroscopy of output gas in reverse water gas shift reaction process

Fig. S6* Mass spectroscopy of 10% methane in argon
Fig. S7* Mass spectroscopy of 100% CO₂

Fig. S8* Mass spectroscopy of 100% CO
Fig. S9* Mass spectroscopy of 5% hydrogen in argon